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The aim of this paper is to present results concerning a three-dimensional model including a
prey, a predator and top-predator, which we have named the Volterra–Gause model because
it combines the original model of V. Volterra incorporating a logisitic limitation of the P. F.
Verhulst type on growth of the prey and a limitation of the G. F. Gause type on the intensity
of predation of the predator on the prey and of the top-predator on the predator. This study
highlights that this model has several Hopf bifurcations and a period-doubling cascade generating
a snail shell-shaped chaotic attractor.

With the aim of facilitating the choice of the simplest and most consistent model a compar-
ison is established between this model and the so-called Rosenzweig–MacArthur and Hastings–
Powell models. Many resemblances and differences are highlighted and could be used by the
modellers.

The exact values of the parameters of the Hopf bifurcation are provided for each model as
well as the values of the parameters making it possible to carry out the transition from a typical
phase portrait characterizing one model to another (Rosenzweig–MacArthur to Hastings–Powell
and vice versa).

The equations of the Volterra–Gause model cannot be derived from those of the other
models, but this study shows similarities between the three models. In cases in which the top-
predator has no effect on the predator and consequently on the prey, the models can be reduced
to two dimensions. Under certain conditions, these models present slow–fast dynamics and their
attractors are lying on a slow manifold surface, the equation of which is given.

Keywords : Chaos; strange attractors; predator–prey models; slow–fast dynamics.

1. Introduction

The paper is organized as follows. In the following
section we will study a three-dimensional Volterra–
Gausea model in the most general case. The

stability of the fixed points according to the works of
Freedman and Waltman [1977] and the occurrence
of Hopf bifurcation in this model are examined.
This analysis shows that such a bifurcation exists

aStrictly, in the general case this model should be called the Volterra–Rosenzweig model because the functional response
corresponds to that used by M. L. Rosenzweig in his famous article: Paradox of enrichment [Rosenzweig, 1971]. However, to
avoid confusion with the Rosenzweig–MacArthur [1963] model we prefer to use the name of G. F. Gause, who was the first to
use this kind of functional response but in a particular case [Gause, 1935] corresponding to the object of our study.
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in the xy plane and is possibly apart from the xy
plane.

Then, the study of the Volterra–Gause model
for particular values of parameters (k = p = 1/2),
check for the existence of bifurcations in the xy
plane and apart from the xy plane and determine
the values of the bifurcation parameters. Dynamic
analysis of this particular case demonstrate the
existence of a chaotic attractor in the shape of a
snail shell. The bifurcation diagram indicates the
existence of a period-doubling cascade leading to
chaos. The section ends with another particularly
dynamical aspect which is, that under certain con-
ditions, this model presents slow–fast dynamics. So,
according to the works of Ramdani et al. [2000],
we give the slow manifold equation of the sur-
face on which the trajectories of the attractor are
lying.

The aim of the last section is to com-
pare the most used predator–prey models. We
begin by summarizing the general properties
of Rosenzweig–MacArthur [1963] and Hastings–
Powell [1991] models, including the stability of
fixed points, the value of the Hopf bifurcation
parameter and the equation of the slow manifold
surface.

In the Hastings–Powell [1991] model, we show,
against expectations, that some of the trajecto-
ries of the so-called “teacup” also lie on a sur-
face. Similarities in behavior between these three
models are highlighted: the nature and number
of fixed points, type of bifurcation, shape of the
attractor.

Variation of a parameter to obtain a Hopf
bifurcation also makes it possible to emphasize
a transition from one model to another. Indeed,
the modification of certain parameter values for a
given model can be used to determine the behav-
ior phase portrait of another model. This com-
parison exhibits that the phase portrait of the
Volterra–Gause model can be transformed into that
of the Hastings–Powell [1991] model and vice versa.
Similarly, the phase portrait of the Rosenzweig–
MacArthur [1963] model can be transformed into
a “teacup” and vice versa. The phase portrait
of the Volterra–Gause model is similar to that
of Rosenzweig–MacArthur [1963] in a number of
respects.

These results are potentially of great value to
modelers as they provide a panel of models that are
“equivalent” in terms of phase portrait but differ-
ents in terms of dynamic.

2. General Volterra–Gause Model

2.1. Model equations

We consider the Volterra–Gause model for three
species interacting in a predator–prey mode.

dx

dt
= a

(
1 − λ

a
x
)
x − bxky = xg(x) − byp(x)

dy

dt
= dxky − cy − eypz = y[−c + dp(x)] − ezq(y)

dz

dt
= (fyp − g)z = z[−g + fq(y)]

(1)

This model consists of a Verhulst [1838] logistic
functional response for the prey (x), and a Gause
[1935] functional response for the predator (y),
and for the top-predator (z). Parameter a is the
maximum per-capita growth rate for the prey in
the absence of predator and a/λ is the carrying
capacity.

The per-capita predation for the predator rate
is of the Gause [1935] type.

p(x) = xk

Parameter b is the maximum per-capita predation
rate. Parameter c is the per-capita natural death
rate for the predator. Parameter d is the maxi-
mum per-capita growth rate of the predator in the
absence of the top-predator. Parameters e is similar
to b, except that, in each case, the predator y is the
prey for the top-predator z. Similar explanations
also apply to f and g.

2.2. Dynamic aspects

2.2.1. Equilibrium points

The nonalgebraic structure of the polynomials
forming the right-hand side of Eq. (1) makes it
impossible to determine the fixed points by the
classical nullclines method. However, this model
possesses two obvious fixed points: O(0, 0, 0),
K(a/λ, 0, 0). This makes it possible to look
for fixed points within the xy plane, by fix-
ing z = 0. Nullcline analysis of the system
(1) identifies the point I, with the following
coordinates:

I
(( c

d

) 1
k
,

d

bc

( c

d

) 1
k

[
a − λ

( c

d

) 1
k

]
, 0

)
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2.2.2. Conditions of existence of the fixed points in the xy plane (CEFP 2D)

Fixed points are only of biological importance if they are positive or null. This generates the following
condition:

a − λ
( c

d

) 1
k

> 0 ⇒ d
(a

λ

)k − c > 0 (2)

2.2.3. Functional Jacobian matrix

J (x, y, z) =




a − bkx−1+ky − 2xλ −bxk 0
dkx−1+ky −c + dxk − epy−1+pz −eyp

0 fpy−1+pz −g + fyp


 =




m11 m12 m13

m21 m22 m23

m31 m32 m33


 (3)

2.2.4. Nature and stability of the fixed
points in the xy plane

The point O(0, 0, 0), with eigenvalues {a,−c,−g},
is unstable (a > 0), attractive according to
y′y and z′z and repulsive according to x′x. The
point K (a/λ, 0, 0), with eigenvalues {−a,−g,−c +
d(a/λ)k}, is unstable (−c + d(a/λ)k > 0, accord-
ing to (2), attractive according to x′x and z′z and
repulsive according to:

y = −
a − c + d

(a

λ

)k

b
(a

λ

)k
x = −κx

because according to (2): −c + d(a/λ)k > 0 and
thus κ > 0. The method described by Freedman
and Waltman [1977] can be used to study the sta-
bility of the point

I
(( c

d

) 1
k
,

d

bc

( c

d

) 1
k

[
a − λ

( c

d

) 1
k

]
, 0

)

The characteristic polynomial of the functional
Jacobian matrix can be factorized in the follow-
ing form:

(m33 − σ)(σ2 − m11σ − m12m21) = 0;
m13 = m31 = m32 = m22 = 0

and provides three eigenvalues: σ1, σ2 and σ3

σ1 = m33 = −g + fyp (4)

The sign of the first of these eigenvalues cannot
be determined under any condition and it is there-
fore impossible to draw conclusions concerning the
stability. However, Hopf bifurcation in the xy plane
can occur only if this eigenvalue is negative. For
the other two eigenvalues, resolution of the second-
order polynomial provides a pair of eigenvalues
σ2 and σ3.

σ2,3 =
m11 ±

√
∆

2

=
m11 ±

√
m2

11 + 4m12 m21

2
(5)

If we assume that ∆ < 0, then the two eigenval-
ues are complex conjugated. For Hopf bifurcation
to occur, the real part of these eigenvalues must
be positive and cancelled for a certain value of a
parameter. Let us choose λ as this parameter and
calculate the real part of these eigenvalues.

2Re[σ2] = m11 = a − bkx−1+ky − 2xλ

=
[
(1 − k)

bc

d
y − λx2

](
1
x

)

As a − λx2 = bxky and xk = c/d. Re[σ2] > 0 if
and only if (1 − k)y bc/d − λx2 ≥ 0, providing a
condition for y

y ≥ d

bc

λ

1 − k
x2

by replacing x and y by the coordinates of I

λ ≤ a

(
1 − k

2 − k

)( c

d

)− 1
k (6)

One can demonstrate that whatever the parameters
of the model the discriminant ∆ is always nega-
tive. Thus the point I is always a stable or unstable
focus.

2.2.5. Conditions for the existence of a
Hopf bifurcation in the xy plane

Provided that λ remains below this value and the
first eigenvalue (4) is negative, so that the asso-
ciated eigendirection is attractive and the flow is
directed towards the basin of attraction of the
point I, a limit cycle exists in the xy plane and
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a Hopf bifurcation may occur in that plane. The
point

I
(( c

d

) 1
k
,

d

bc

( c

d

) 1
k

[
a − λ

( c

d

) 1
k

]
, 0

)

is then unstable, and acts as an attractive focus in
the xy plane.

2.2.6. Fixed points in the first octant

We will now investigate the existence of fixed points
in the first octant with biological significance, i.e.
for z > 0. The nonalgebraic form of the right-hand
side of the first Eq. (1) precludes solution by means
of analytical calculation.

Nevertheless, expressing this polynomial as a
function of x makes it possible to specify the num-
ber of fixed points and the interval in which they
belong. There are only two possible solutions to this
nonalgebraic polynomial.

We will call x1,2 = α and x∗ the two solu-
tions and the positive maximum of this nonalge-
braic polynomial. They lie in the following interval:

x1 < x∗ <
a

λ

(
1 − k

2 − k

)
< x2 <

a

λ
(7)

According to the third Eq. (1), the second coordi-
nate y can be expressed as follows:

(fyp − g)z = 0 ⇒ y =
(

g

f

) 1
p

If we set

β = y =
(

g

f

) 1
p

from the second Eq. (1), the third coordinate z can
be expressed in terms of x:

−cy + dxky − eypz = 0 ⇒ z =
fβ

eg
(dxk − c)

2.2.7. Conditions for the existence of fixed
points in the first octant (CEFP 3D)

From this third coordinate, another condition for
the biological relevance of the fixed point can be
determined.

dxk − c > 0 ⇒ x >
( c

d

) 1
k (8)

The fixed point J can therefore be defined in terms
of all of its coordinates, and the conditions justify-
ing its biological existence.

J
(

α, β,
fβ

eg
(dαk − c)

)

with

x >
( c

d

) 1
k (9)

A bifurcation can only occur apart from the xy
plane if there is no possible bifurcation in the
xy plane. This can be translated into a condition
deduced from the following inequality (7):

λ ≥ a

(
1 − k

2 − k

)( c

d

)− 1
k ⇒ a

λ

(
1 − k

2 − k

)
≤

( c

d

) 1
k

(10)

By combining inequalities (7) and (9), we obtain:

x1 < x∗ <
a

λ

(
1 − k

2 − k

)
<

( c

d

) 1
k

< x2 <
a

λ
(11)

2.2.8. Nature and stability of the fixed
points in the first octant

The method descibed by Freedman and Waltman
[1977] can still be used to investigate the stability
of the point

J
(

α, β,
fβ

eg
(dαk − c)

)

According to this method, if m11 > 0, then the
point J is unstable. If m11 < 0 and m22 ≤ 0,
then the point J is stable. Furthermore, if m11 < 0,
then the point J is asymptotically stable. The trace
and the determinant of the functional Jacobian
matrix evaluated at point J give:

σ1 + σ2 + σ3 = Tr[J ] = m11 + m22

= a(1 − k) − λx(2 − k)

+ (1 − p)(−c + dxk)

σ1σ2σ3 = Det[J ] = m11m23m32

= [a(1 − k) − λx(2 − k)][egpyp−1z]

= [a(1 − k) − λx(2 − k)]( − c + dxk)gp

2.2.9. Conditions for the existence of a
Hopf bifurcation in the first octant

Based on the conditions for the biological existence
of a fixed point J (CEFP 3D), we can conclude: If x1

is the solution of the first nullcline, then the point J
does not exist because, according to condition (11),
x1 < (c/d)1/k and therefore z1 < 0. A Hopf bifur-
cation may then occur at point I in the xy plane
if the first eigenvalue (4) is negative. In this case,
the associated eigendirection is attractive and the
flow is directed towards the basin of attraction of
the point I. This is consistent with condition (6),
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which implies that:

x1 <
( c

d

) 1
k

< x∗ <
a

λ

(
1 − k

2 − k

)

If x2 is the solution of the first nullcline, then
the point J exists because according to the condi-
tion (11),

x1 < x∗ <
a

λ

(
1 − k

2 − k

)
<

( c

d

) 1
k

< x2 <
a

λ
In this case, points I and J coexist and it is nec-
essary to determine the stability of J, even if the
first eigenvalue (4) is positive, resulting in the asso-
ciated eigendirection being repulsive and the flow
being directed towards the basin of attraction of the
point J. Nevertheless in this precise case: m11 =
a(1 − k) − λx2(2 − k) < 0. This implies that the
determinant is negative and the sign of the trace is
unspecified because we deal with a difference.

If we assume that the characteristic polynomial
of the functional Jacobian matrix has two complex
conjugated eigenvalues, the trace and the determi-
nant will be written:

σ1 + 2Re[σ2] = Tr[J ]

σ1|σ2|2 = Det[J ] < 0
We can deduce from these expressions that the first
eigenvalue is negative. Thus the associated eigendi-
rection is attractive and the flow is directed towards
the basin of attraction of the point J. Moreover, the
indeterminate nature of the sign of the trace is con-
sistent with the possibility that the real part of the
eigenvalues can change. Thus, in this case, the pos-
sibility of Hopf bifurcation apart from the xy plane
may be considered.

2.3. Volterra–Gause model for
k = p = 1/2

2.3.1. Dimensionless equations

Expressing equations in a dimensionless form makes
it possible to reduce the number of parameters of
the model.

Let us assume:

x → a

λ
x

y → a

b

(a

λ

) 1
2
y

z → d

e

(a

b

) 1
2
(a

λ

) 3
4
z

t → t

d
(a

λ

) 1
2

and

δ1 =
c

d

1(a

λ

) 1
2

δ2 =
1
f

g[
a

b

(a

λ

) 1
2

] 1
2

ξ =
d

a

(a

λ

) 1
2

ε =
f

d

(a

b

) 1
2

(a

λ

) 1
4

This generates a dimensionless model with four
parameters instead of eight. In fact, as we have
decided to set k = p = 1/2, the final model actually
has six parameters rather than eight.

ξ
dx

dt
= x(1 − x) − x

1
2 y

dy

dt
= −δ1y + x

1
2 y − y

1
2 z (12)

dz

dt
= ε(y

1
2 − δ2)z

2.3.2. Fixed points in the xy plane

The two previously identified fixed points are again
found: O(0, 0, 0) and K(1, 0, 0). In addition, the set-
ting of the k and p parameters makes it possible
to solve the first nullcline simply by changing the
variable.

However, the method developed above remains
valid and exact knowledge of the solutions of this
equation is not necessary for determination of the
stability of the fixed points. It is therefore possible
to look for fixed points in the xy plane by setting
z = 0 for k = p = 1/2. This gives the following
coordinates of point I:

I(δ2
1 , δ1(1 − δ2

1), 0)

2.3.3. Conditions for the existence of fixed
points in the xy plane (CEFP 2D)

Fixed points are only of biological significance if
they are positive or null. This generates the follow-
ing condition:

1 − δ2
1 > 0 ⇒ δ1 < 1 (13)
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2.3.4. Functional Jacobian matrix

J (x, y, z) =




1
ξ

(
1 − 2x − 1

2
y√
x

)
−1

ξ

√
x 0

1
2

y√
x

√
x − 1

2
z√
y
− δ1 −√

y

0
1
2
ε

z√
y

ε
(√

y − δ2

)




=




m11 m12 m13

m21 m22 m23

m31 m32 m33


 (14)

2.3.5. Nature and stability of the fixed
points in the xy plane

The point O(0, 0, 0), with the eigenvalues {1/ξ,
−δ1,−εδ2}, is unstable (1/ξ > 0), and the eigendi-
rections associated with the eigenvalues −δ1,−εδ2

are attractive according to y′y and z′z and repulsive
according to x′x for 1/ξ.

The point K(1, 0, 0), with the eigenvalues
{−1/ξ, 1−δ1,−εδ2}, is unstable (1−δ1 > 0, accord-
ing to (10)), and the eigendirections associated with
the eigenvalues −1/ξ,−εδ2 are attractive according
to x′x and z′z and repulsive according to the direc-
tion of the straight line defined by the following
equation:

y = −[ξ(1 − δ1) + 1]x

The method of Freedman and Waltman [1977] can
again be used to assess the stability of the point

I(δ2
1 , δ1(1 − δ2

1), 0)

The characteristic polynomial of the functional
Jacobian matrix can be factorized in the following
form:

(m33 − σ)(σ2 − m11 σ − m12 m21) = 0;
m13 = m31 = m32 = m22 = 0

and provides three eigenvalues: σ1, σ2 and σ3

σ1 = m33 = ε
[
δ

1
2
1 (1 − δ2

1)
1
2 − δ2

]
(15)

For the first eigenvalue, the conditions for the exis-
tence of a fixed point in the first octant (CEFP
3D) make it possible to define the sign of the eigen-
value, and therefore to draw conclusions concerning
the stability. For the other two eigenvalues, resolu-
tion of the second-order polynomial gives a pair of
eigenvalues, σ2 and σ3.

σ2,3 =
m11 ±

√
∆

2

=
m11 ±

√
m2

11 + 4m12 m21

2
(16)

If we assume that ∆ < 0, then the two eigenval-
ues are then complex conjugated. For Hopf bifur-
cation to occur, the real part of these eigenvalues
must be positive and cancelled for a certain value
of a parameter. Let us choose δ1 this parameter and
calculate the real part of these eigenvalues.

2Re[σ2] = m11 =
1
ξ
(1 − 3δ2

1) ≥ 0 ⇒ δ1 ≤ 1√
3

(17)

For this bifurcation to occur in the xy plane, the
first eigenvalue (15) must be negative, so that
the associated eigendirection is attractive and the
flow is directed towards the basin of attraction of
point I.

If this eigenvalue is considered as a function of
δ1, one can show that it will remain negative pro-
vided that:

δ2 ≥
vuut 2

3
√

3
(18)

This condition rules out the existence of a point J
in the first octant.

2.3.6. Conditions for the existence of a
Hopf bifurcation in the xy plane

If conditions (17) and (18) are met, a limit cycle
exists in the xy plane and a Hopf bifurcation may
occur in that plane. Point J of dimension three
cannot exist and the point I(δ2

1 , δ1(1 − δ2
1), 0) is

unstable. It acts as an attracive focus in the xy
plane.

2.3.7. Fixed points in the first octant

We will now focus on the existence of fixed points
of biological importance in the first octant, i.e. for
z > 0. We can specify the number of solutions of
the nonalgebraic polynomial of the first Eq. (12)
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and the interval in which they lie as described
above. We will once again call x1,2 = α and x∗
the two solutions and the positive maximum of this
nonalgebraic polynomial. These solutions lie in the
following interval:

0 < x1 < x∗ <
1
3

< x2 < 1

Mathematical study of the first nullcline as a func-
tion of x generates the following condition for the
existence of the fixed points in the first octant
(CEFP 3D):

δ2 ≤
vuut 2

3
√

3
(19)

From the third Eq. (12), the second coordinate y
may be expressed as follows:

ε(y
1
2 − δ2) = 0 ⇒ y = δ2

2

From the second Eq. (12), the third coordinate z
can be expressed in terms of x:

−δ1y + x
1
2 y − y

1
2z = 0 ⇒ z = δ2(x

1
2 − δ1)

2.3.8. Conditions for the existence of fixed
points in the first octant (CEFP 3D)

From this third coordinate, we can deduce another
condition for the biological existence of the
fixed point:

x
1
2 − δ1 > 0 ⇒ x > δ2

1 (20)

The fixed point J can therefore be defined in terms
of its coordinates in all three dimensions and the
conditions justifying its biological existence.

J(α, δ2
2 , δ2(α

1
2 − δ1))

with

x > δ2
1 (21)

If a bifurcation is to occur apart from the xy plane,
bifurcation must not be possible in the xy plane.
This translates into a condition that can be deduced
from inequality (17):

δ1 >
1√
3

or
1√
3

>
1
3

By combining inequalities (20) and (21), we obtain:

x1 < x∗ <
1
3

< δ1 < x2 < 1 (22)

2.3.9. Nature and stability of the fixed
points in the first octant

The method of Freedman and Waltman [1977] can
be used to study the stability of the point

J(α, δ2
2 , δ2(α

1
2 − δ1))

According to this method, if m11 > 0, then the
point J is unstable. If m11 < 0 and m22 ≤ 0,
then the point J is stable. Furthermore, if m11 < 0,
then the point J is asymptotically stable. The trace
and the determinant of the functional Jacobian
matrix evaluated at point J give:

σ1 + σ2 + σ3 = Tr[J ] = m11 + m22

=
1
2ξ

(1 − 3x) +
1
2
(x

1
2 − δ1)

σ1 σ2 σ3 = Det[J ] = m11 m23 m32

=
ε

2ξ
(1 − 3x)z

2.3.10. Conditions for the existence of a
Hopf bifurcation in the first octant

From the conditions for the biological existence of
the fixed point J (CEFP 3D), we can conclude: If
x1 is the solution of the first nullcline, then point J
does not exist because according to condition (22),
x1 < δ1 and therefore z1 < 0. A Hopf bifurcation
may occur in the xy plane at point I if the first
eigenvalue (15) is negative. In this case, the asso-
ciated eigendirection is attractive and the flow is
directed towards the basin of attraction of point I,
consistent with condition (17), which implies that:

x1 < δ1 < x∗ <
1
3

If x2 is the solution of the first nullcline, then the
point J exists because according to condition (22),

0 < x1 < x∗ <
1
3

< δ1 < x2 < 1

In this case, points I and J coexist and it is nec-
essary to determine the stability of J, even if the
first eigenvalue (15) is positive, resulting in the asso-
ciated eigendirection being repulsive and the flow
being directed towards the basin of attraction of the
point J. Nevertheless in this precise case: 1−3x < 0.
This implies that the determinant is negative and
the sign of the trace is unspecified as we are dealing
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with a difference. If we assume that the characteris-
tic polynomial of the functional Jacobian matrix has
two conjugated complex eigenvalues, then the trace
and the determinant can be expressed as follows:

σ1 + 2Re[σ2] = Tr[J ]

σ1|σ2|2 = Det[J ] < 0

We can deduce from this that the first eigenvalue is
negative, so the associated eigendirection is attrac-
tive and the flow is directed towards the basin of
attraction of the point J. Moreover, the indetermi-
nate nature of the sign of the trace makes it possible
for the real part of the eigenvalues to change. Hopf
bifurcation apart from the xy plane may therefore
be considered.

2.3.11. Bifurcation parameter value

Numerically, the value of the selected bifurcation
parameter can be calculated with a high level of
accuracy. The technique used involves calculat-
ing the fixed points according to the parameter
and evaluating the eigenvalues of the functional
Jacobian matrix at this point. These eigenvalues
are thus themselves a function of the selected

parameter. Their real parts can therefore be
expressed as a function of this parameter, making
it possible to determine the value for which two of
these eigenvalues cancel out, corresponding to the
value of the bifurcation parameter. Applied to sys-
tem (12) by setting ξ = 0.866, ε = 1.428, δ2 = 0.376,
we obtained for the parameter δ1:

δ1 = 0.747413

2.3.12. Phase portrait

Despite its familiar appearance, this attractor plot-
ted in Fig. 1 behaves in a complex manner. Starting
from any initial condition in the first octant, the
flow is directed towards point K, which is attrac-
tive according to the x′x eigendirection. Following
the repulsive eigendirection y = −[ξ(1− δ1)+1]x of
the point K, the flow reaches the basin of attrac-
tion of the point I, which exhibits an attractive
focus behavior in the xy plane and turns around
the point I.

However, as this point has a repulsive eigendi-
rection, the flow leaves the xy plane and moves
towards the basin of attraction of the point J which
has an attractive eigendirection. As the point J
behaves as a repulsive focus, the flow turns around
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Fig. 1. Phase portrait of system (12). The chaotic attractor takes the shape of a snail shell. Parameter values are:
ξ = 0.866, ε = 1.428, δ1 = 0.577, δ2 = 0.376.
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this point while moving away in the direction of
the point K which has an attractive eigendirection
according to z′z. The flow is therefore “reinjected”
by this “saddle-point”.

2.3.13. Bifurcation diagrams

As pointed out by Glass and Mackey [1988], the con-
struction of a bifurcation diagram is a good means
of locating the signature of chaos in a system. We
present in Fig. 2 the bifurcation diagram of the
dimensionless system (12) to highlight the period-
doubling induced by the parameter δ1.

2.3.14. Poincaré section and Poincaré map

The Poincaré section corresponds here to a plane
with z = 1/2, i.e. a plane dividing the snail shell

into two parts. It therefore consists of a set of x and
y values. Taking x(n) as the value of x at the nth
intersection of the trajectory with the Poincaré sec-
tion, we can construct the Poincaré map: the func-
tion relating x(n + 1) to x(n)

In Fig. 3, we can see that the slope of the mul-
timodal Poincaré map is steep, a feature typical of
chaos.

2.4. Slow–fast dynamics

Given all the condtions for the existence of fixed
points (CEFP 2D & 3D), it is reasonable to assume
“trophic time diversification” occurs, implying
that:

a > d > f

0.61 0.62 0.63 0.64 0.65 0.66 0.67
δ1

0.6
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1

1.1
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Fig. 2. Bifurcation diagram of system (12) for the parameter δ1; zmax = f(δ1).
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Fig. 3. Poincaré map of system (12) for the same parameters.
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i.e. the maximum per-capita growth rate decreases
from the bottom to the top of the food chain.

We can then consider the case in which:
a � d � f

or
0 < ξ � 1

and
0 <

1
ε
� 1

Under these conditions, system (12) becomes a sin-
gularly perturbed system of three time scales. The
rates of change for the prey, the predator and top-
predator from fast to intermediate to slow, respec-
tively [Deng, 2001]. Based on the works of Ramdani
et al. [2000], we consider system (12) to be a slow–
fast autonomous dynamic system and provide the
equation for the slow manifold on which the attrac-
tor lies. A state equation binding the three variables
can then be established.

2.4.1. Slow manifold equation based
on the orthogonality principle

Using the method developed by Ramdani et al.
[2000], we can obtain the slow manifold equation
defined by the layer of planes locally orthogonal to

the fast eigenvector on the left.

λ1(x, y, z)zλ1(x, y, z)(1, β(x, y, z), γ(x, y, z))

Let us call λ1(x, y, z) the fast eigenvalue of J (x, y,
z) and zλ1(1, β(x, y, z), γ(x, y, z)) the fast eigen-
vectors on the left of J (x, y, z). Transposing the
characteristic equation,

t(J (x, y, z))zλ1(x, y, z) = λ1(x, y, z)zλ1(x, y, z)

we can find β and γ.

β =
1

1
2
x− 1

2 y

(
λ1 − 1

ξ

(
1 − 2x − 1

2
x− 1

2 y

))

γ = β
y

1
2

ε(y
1
2 − δ2) − λ1

The slow manifold equation is thus given by:

ẋ + β(x, y, z) ẏ + γ(x, y, z) ż = 0 (23)

This leads to an implicit equation which can be
simulated numerically with Mathematica software
(Fig. 4).

Fig. 4. Slow manifold surface based on the orthogonality principle and phase portrait of the Volterra–Gause system (12) with
the same parameter values. In this figure, we can see the slow manifold on which the solutions of the system (12) are based.
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2.4.2. Slow manifold equation based
on the slow eigenvectors

The slow manifold equation could also have been
obtained as descibed by Ramdani et al. [2000], by
assuming that the three components of the system
(12) are always parallel to a plane containing the
two slow eigenvectors.

2.5. Conclusion

This work demonstrates the presence of chaos in a
Volterra–Gause model of predator–prey type. Nev-
ertheless, a more profound mathematical approach,
such as investigation of the possible existence of
Shilnikov orbits, should make it possible to confirm
the presence of chaos in this system. Our work has
also demonstrated that this model has five key char-
acteristics:

— Presence of limit cycles
— Existence of Hopf bifurcation
— Chaos by period-doubling cascade
— Slow–fast dynamics
— Existence of a slow manifold on which the

attractor lies.

The Volterra–Gause model is also similar to other
models, such as those of Rosenzweig–MacArthur
and Hastings and Powell. These similarites will be
considered in the next section.

3. Similarity to the
Rosenzweig–MacArthur and
Hastings–Powell Models

3.1. Rosenzweig–MacArthur model

We considered the Rosenzweig–MacArthur model
[1963] for a three trophic level interaction involving
a prey (x), a predator (y) and a top-predator (z).

dx

dt
= a

(
1 − λ

a
x
)
x − bxy

H1 + x
= xg(x) − byp(x)

dy

dt
= y

( dx

H1 + x
− c

)
− eyz

H2 + y
(24)

= y[−c + dp(x)] − ezq(y)

dz

dt
= z

( fy

H2 + y
− g

)
= z[−g + fq(y)]

This model includes a Verhulst [1838] logistic
prey (x), a Holling [1959] type 2 predator (y), and
a Holling [1959] type 2 top-predator (z). Parame-
ter a is the maximum per-capita growth rate for

the prey in the absence of predator and K = a/λ is
the carrying capacity.

The per-capita predation rate of the predator
has the Holling [1959] type 2 form.

p(x) =
bx

H1 + x

Parameter b is the maximum per-capita predation
rate and H1 is the semi-saturation constant for
which the per-capita predation rate is half its max-
imum, b/2. Parameter c is the per-capita natural
death rate for the predator. Parameter d is the max-
imum per-capita growth rate of the predator in the
absence of the top-predator. Parameters e and H2

are similar to b and H1, except that the predator y
is the prey for the top-predator z. Parameters f
and g are similar to c and d, except that the preda-
tor y is the prey for the top-predator z. Note that
the Rosenzweig–MacArthur model was developed
from the seminal works of Lotka [1925] and Volterra
[1926].

3.1.1. Dimensionless equations

With the following changes of variables and
parameters,

t → dt, x → λ

a
x, y → bλ

a2
y, z → beλ

da2
z,

ξ =
d

a
, ε =

f

d
, β1 =

λH1

a
, β2 =

H2

Y0
,

Y0 =
a2

bλ
, δ1 =

c

d
, δ2 =

g

f

Equations (24) are recast in a dimensionless form.

3.1.2. Biological hypothesis

We have made several assumptions to provide bio-
logical reality to our study:

— Positivity of the fixed points
— “Trophic time diversification hypothesis” such

that the maximum per-capita growth rate
decreases from the bottom to the top of the food
chain as follows

a > d > f > 0

We also assumed major changes over time

a � d � f > 0 (25)

Detailed comments on changes in variables and
parameters were made in the paper by Deng [2001].
For technical reasons, both y and z were rescaled
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by a factor of 0.25:

y → y

0.25
; z → z

0.25
Equations (24) have been reformulated in the

following dimensionless form:

ξ
dx

dt
= x

(
1 − x − y

β1 + x

)

dy

dt
= y

(
x

β1 + x
− δ1 − z

β2 + y

)
(26)

dz

dt
= εz

(
y

β2 + y
− δ2

)

3.1.3. Dynamic aspects

Under these conditions (25), the system (26)
becomes a singularly perturbed system of three
time scales, as previously pointed out by sev-
eral authors [Kuznetsov, 1995; Muratori & Rinaldi,
1992; Rinaldi & Muratori, 1992]. The rates of
change for the prey, the predator and the top-
predator range from fast to intermediate to slow,
respectively [Deng, 2001]. Based on the works of
Ramdani et al. [2000], we consider the system (26)
to be a slow–fast autonomous dynamic system and

provide the equation for the slow manifold on which
the attractor lies. A state equation binding the three
variables can also be established.

Nature and stability of the fixed points

For the set of values initially used in this simulation
(ξ = 0.1, β1 = 0.3, β2 = 0.1, δ1 = 0.1, δ2 = 0.62, ε =
0.3), we obtain four equilibrium points (of biological
significance) with the following eigenvalues:

O(0, 0, 0) → {10,−0.186,−0.1}
I(0.033, 1.289, 0) → {0.314194 + 0.878508i,

0.314194 − 0.878508i, 0.0429782}
J(0.859, 0.652, 0.674) → {−7.51526, 0.18173

+ 0.111807i, 0.18173 − 0.111807i}
K(1, 0, 0) → {−10, 0.669231,−0.186}

So according to the Lyapunov criterion, all these
points are unstable. The literal expression of the
fixed points highlights their dependance on the
parameters considered. We use this result below to
calculate the Hopf bifurcation parameter.

Phase portrait and vectorfield portrait

Figure 5 shows slow–fast dynamic features, with
long arrow for the fast features and short arrows
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Fig. 5. Phase and vectorfield portrait of the Rosenzweig–MacArthur system (26) with the same parameter values.
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for the slow features. This portrait consists of four
branches: two fast (the shorter branches) and two
slow (the longer branches). The pattern of change in
this attractor resembles that of the original Volterra
model. Initially, the fast part of the attractor,
the prey (x) rapidly increase in number, whereas
the number of predators (y) and top-predators (z)
remain very low. This situation is realistic. Close
to the equilibrium point I, the number of top-
predators suddenly decreases, triggering an increase
in the predator population. In the second part of
the attractor, a slow stage, the number of preda-
tors increases, as does the number of top-predators,
whereas the number of prey decreases. This part
of the attractor leads on to another slow stage,
during which the number of predators is maximal.
This results in a decrease in the number of prey.
In the fourth part of the attractor, a slow stage,
the number of top-predators continues to increase
while the number of predators decreases. As demon-
strated by Deng [2001], this attractor with a Moe-
bius strip shape displays chaotic behavior.

3.1.4. Slow manifold equation

Slow manifold equation based on the
orthogonality principle

As described in Sec. 2.4, the slow manifold equation
can be expressed as follows:

λ1(x, y, z)zλ1(1, β(x, y, z), γ(x, y, z))

Let us call λ1(x, y, z) the fast eigenvalue of J (x, y,
z) and zλ1(1, β(x, y, z), γ(x, y, z)) the fast eigen-
vectors to the left of J (x, y, z). Transposing the
characteristic equation,

t(J (x, y, z))zλ1(x, y, z) = λ1(x, y, z)zλ1(x, y, z)

we can find β and γ.

β =
(x + β1)2

β1y

[
λ1 − 1

ξ

(
1 − 2x − 0.25yβ1

(x + β1)2

)]

γ = β

0.25y
0.25y + β2

ε

(
0.25y

0.25y + β2
− δ2

)
− λ1

ẋ + β(x, y, z)ẏ + γ(x, y, z)ż = 0 (27)

Fig. 6. Slow manifold surface defined according to the
orthogonality principle. Nullcline surface corresponding
to the singular perturbation and phase portrait of the
Rosenzweig–MacArthur system (26), with the same param-
eter values. We seen here the slow manifold on which the
solutions of the system (26) are based.

This leads to an implicit equation which can be
simulated numerically with the same software. The
result is plotted in Fig. 6.

Slow manifold equation based on the
slow eigenvectors

The slow manifold equation can be also obtained by
means of the slow eigenvectors method.

3.1.5. Hopf bifurcation

We now investigate Andronov–Hopf bifurcation.
The first stage of this process involves determining
the parameter likely to produce such a bifurcation.
The two slow–fast parameters ξ and ε cannot gen-
erate Hopf bifurcation because they leave invariant
the fixed points, they cannot cancel the real part of
the eigenvalues of the functional Jacobian matrix
calculated for these points. It would also appear
to be most useful to consider a parameter coupling
the predator-prey and predator-top-predator equa-
tions. The parameters δ1 and δ2 may be involved
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in bifurcation. The parameter δ1 has the advan-
tage of leaving invariant the x-coordinate and the
y-coordinate of the singular point. The value of
the bifurcation parameter can be calculated numer-
ically as described in Sec. 2.3.11. Thus, a Hopf bifur-
cation occurs:

— If the real part of the conjugated complex eigen-
values of the functional Jacobian matrix is can-
celled for a certain value δ1 = δ1C

— If the derivative with respect to δ1 of this eigen-
value calculated in δ1C is non-zero

— If the other real eigenvalue evaluated in δ1 is
strictly negative.

The corresponding value of δ1 is calculated as
follows:

Re[λ2] = 0

The numerical solution of this polynomial equation
gives the following value:

δ1 = 0.683539

As the other two conditions are fulfilled, Hopf bifur-
cation occurs at

δ1 = 0.683539

Note: The Routh & Hurwitz theorem can also be
used to determine the value of the parameter δ1 at
which Hopf bifurcation occurs. Indeed, by clarify-
ing the characteristic polynomial of the Jacobian
matrix at point J, we obtain a polynomial of the
form: a0+a1λ+a2λ

2+a3λ
3 = 0. However, according

to the Routh and Hurwitz theorem, all the roots of
this polynomial have negative real parts when the
determinants D1,D2 and D3 are all positive. The
positivity of the first determinant D1 fulfills a con-
dition for δ1 making it possible to obtain the value
cited above (�0.68).

3.2. The Hastings–Powell model

By changing the variables followed in the
Rosenzweig–MacArthur [1963] model, we can
obtain the Hastings and Powell [1991] model

dx

dt
= a

(
1 − λ

a
x

)
x − bxy

H1 + x
= xg(x) − byp(x)

dy

dt
= y

(
dx

H1 + x
− c

)
− eyz

H2 + y

= y[−c + dp(x)] − ezq(y)

dz

dt
= z

(
fy

H2 + y
− g

)
= z[−g + fq(y)]

3.2.1. Dimensionless equations

With the following changes of variables and
parameters,

t → 1
a
t, x → a

λ
x, y → ad

λb
y, z → fba2

deλ
z

dx

dt
= x(1 − x) − a1xy

1 + β1x

dy

dt
= y

(
a1x

1 + β1x
− δ1

)
− a2yz

1 + β2y

dz

dt
= z

(
a2y

1 + β2y
− δ2

)
(28)

with

a1 =
d

λH1
, β1 =

a

λH1
, a2 =

bf

dλH2
,

β2 =
ad

bλH2
, δ1 =

c

a
, δ2 =

g

a
,

by choosing a set of “biologically reasonable”
parameters, system (28) becomes a singularly per-
turbed system of two time scales.

3.2.2. Dynamic aspects

The natural time scale of the interaction between
the predator y and the super-predator z (i.e. inter-
action at the higher trophic levels), is substan-
tially longer than that between the prey x and
the predator y. In other words, δ1 is much larger
than δ2.

Based on the works of Ramdani et al. [2000],
we consider the system (28) to be a slow–fast
autonomous dynamic system for which we can
determinate the equation of the slow manifold on
which the attractor lies. A state equation binding
the three variables can also be established.

Nature and stability of the fixed points

For the initial set of values used in this simu-
lation (ξ = 1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 =
0.01, ε = 1) we obtain four equilibrium points
(of biological significance) with the following
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eigenvalues:

O(0, 0, 0) → {1,−0.4,−0.01}
I(0.1052, 0.2354, 0) → {0.00600753, 0.0547368

+ 0.518656i, 0.0547368 − 0.518656i}
J(0.8192, 0.125, 9.8082) → {−0.61121, 0.038687

+ 0.0748173i, 0.038687 − 0.0748173i},
K(1, 0, 0) → {−1, 0.85,−0.01}

So according to the Lyapunov criterion, all these
points are unstable. The literal expression of the
fixed points highlights their dependance on the
parameters considered. This finding will be used
below, in the calculation of Hopf bifurcation.

Phase portrait

In Fig. 7 is plotted the phase potrait of the
so-called “up-side-down teacup” of the Hastings–
Powell [1991] model.

3.2.3. Slow manifold equation

Slow manifold equation based on the
orthogonality principle

As describe in Sec. 2.4, the equation of the slow
manifold can be expressed as follows:

λ1(x, y, z)zλ1(1, β(x, y, z), γ(x, y, z))

Let us call λ1(x, y, z) the fast eigenvalue of
J (x, y, z) and zλ1(1, β(x, y, z), γ(x, y, z)) the fast

eigenvectors to the left of J (x, y, z). Transposing
the characteristic equation,

t(J (x, y, z))zλ1(x, y, z) = λ1(x, y, z)zλ1(x, y, z)

we can find β and γ.

β =
(

(1 + xβ1)2

5y

)(
λ1 − (1 − 2x) +

5y
(1 + xβ1)2

)

γ = β
0.1y

0.1y − (1 + yβ2)(δ2 + λ1)

The slow manifold equation is thus given by:

ẋ + β(x, y, z)ẏ + γ(x, y, z)ż = 0 (29)

This leads to an implicit equation which can be sim-
ulated numerically with the same software (Fig. 8).

3.2.4. Hopf bifurcation

We will now focus on Andronov–Hopf bifurca-
tion. The first stage in this process involves iden-
tifying the parameter likely to produce such a
bifurcation. The slow–fast parameters ξ and ε
cannot generate bifurcation as they leave the
fixed points invariant and they cannot cancel the
real part of the eigenvalues of the functional
Jacobian matrix calculated for these points. It
would also be useful to consider a parameter cou-
pling the two predator–prey and predator-top-
predator equations. The parameters δ1 and δ2 may
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Fig. 7. Phase portrait of the Hastings and Powell system (28) with the same parameter values.
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Fig. 8. Slow manifold surface based on the orthogonality principle and phase portrait of the Hastings and Powell system (28)
with the same parameter values.

also be considered. The parameter δ1 has the advan-
tage of leaving invariant the x-coordinate and the
y-coordinate of the singular point. It also modifies
the topology of the attractor, conferring on it the
Moebius strip shape of the Rosenzweig–MacArthur
model at a certain value.

We can therefore fix all the values of the param-
eters at the levels described above, except for δ1.
The technique described in Sec. 2.3.11 can then
be used for numerical calculation of the bifurcation
parameter value.

Thus, Hopf bifurcation occurs:

— If the real part of the complex conjugated eigen-
values of the functional Jacobian matrix is can-
celled for a certain value δ1 = δ1C

— If the derivative with respect to δ1 of this eigen-
value calculated in δ1C is nonzero

— If the other real eigenvalue evaluated in δ1 is
strictly negative.

The corresponding value of δ1 is calculated as
follows:

Re[λ2] = 0

The numerical solution of this polynomial equation
gives the following value:

δ2 = 0.7402

As the other two conditions are fullfilled, the Hopf
bifurcation occurs at

δ1 = 0.7402

In addition, by selecting β1 as the bifurcation
parameter and proceeding as described above, it
is possible to calculate the value of this parame-
ter with a high degree of precision. Indeed, can-
celling the part of the complex eigenvalues of the
functional jacobian matrix evaluated at the fixed
point I according to the parameter β1 generates the
value: β1 = 2.11379.

3.3. Similarity between the
various models

3.3.1. Volterra–Gause and
Rosenzweig–MacArthur

The Volterra–Gause model, as described above,
directly resembles the Rosenzweig–MacArthur
model for certain parameter values. Indeed, these
two models present similar dynamic behavior
(Fig. 9). Below the bifurcation threshold, we find
the overall shape of the chaotic attractor of the
Rosenzweig–MacArthur model.
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Fig. 9. Comparison of the Volterra–Gause model (for ξ = 0.964, ε = 1.1, δ1 = 0.518, δ2 = 0.415) and the Rosenzweig–
MacArthur model (for ξ = 0.1, β1 = 0.3, β2 = 0.1, δ1 = 0.1, δ2 = 0.62, ε = 0.3).
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Fig. 10. Phase portrait of the Volterra–Gause model (for ξ = 0.07, ε = 0.85, δ1 = 0.5, δ2 = 0.42).
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3.3.2. The Volterra–Gause and
Hastings–Powell models

The similarity between the Volterra–Gause model
and the Hastings–Powell model, with its famous
“up-side-down teacup” is more striking. Figures 10
and 11 show the basic teacup shape and the behav-
ior of each component x, y, z over time.

3.3.3. The Rosenzweig–MacArthur and
Hastings–Powell models

The bifurcation parameter δ1 chosen in Sec. 2.1.5
modifies the topology of the attractor of the
Rosenzweig–MacArthur model conferring on it, at
a certain value, the shape of the so-called “up-
side-down teacup” of the Hastings–Powell [1991]

Fig. 11. Comparison of the changes over time in the Volterra–Gause (for ξ = 0.07, ε = 0.85, δ1 = 0.5, δ2 = 0.42) and
Hastings–Powell models (for ξ = 1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 = 0.01, ε = 1).
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Fig. 12. Transition from the Rosenzweig–MacArthur model to the Hastings–Powell [1991] model.
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Fig. 13. Transition from the Hastings–Powell model to Rosenzweig–MacArthur model.

model. We can therefore fix all the parameters
at values cited above, except for δ1. Varying the
parameter δ1 up to a value of 0.3, preserves a limit
cycle, which becomes deformed, resulting in a pas-
sage from the Rosenzweig–MacArthur model to the
Hastings–Powell model (Fig. 12).

3.3.4. The Hastings–Powell and
Rosenzweig–MacArthur

The Hastings–Powell model can also be converted
to the Rosenzweig–MacArthur model. Varying the
bifurcation parameter δ1 modifies the topology of
the attractor, conferring on it the Moebius strip
shape of the Rosenzweig–MacArthur model at a cer-
tain value. We can therefore fix all the parameters
at the values cited above, except for δ1. Variation
of the parameter δ1 up to a value of 0.1, results in a

passage from the Hastings and Powell model to the
Rosenzweig–MacArthur model (Fig. 13).

4. Discussion

In this work, we have shown certain similarities
between the three models considered. The common
features of these models, the possibility of transi-
tion from one model to another by parameter vari-
ation and the differences between these models pro-
vide biologists with alternatives in their choice of
predator–prey model.

Despite differences in their functional respo-
nses, these models present striking similarities in
the nature and number of their fixed points, and
in their dynamic behavior: existence of a limit
cycle, occurrence of Hopf bifurcation, presence of
a chaotic attractor or period doubling cascades.

Dynamical
Features Rosenzweig–MacArthur Hastings–Powell Volterra–Gause
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Models

O(0, 0, 0) I(x̂, ŷ, 0) O(0, 0, 0) I(x̂, ŷ, 0) O(0, 0, 0) I(x̂, ŷ, 0)Equilibrium points
J(x∗, y∗, z∗) K(1, 0, 0) J(x∗, y∗, z∗) K(1, 0, 0) J(x∗, y∗, z∗) K(1, 0, 0)

Attractional sink 2 2 2
Hopf bifurcation δ1 = 0.6835 δ1 = 0.7402 δ1 = 0.7474
Chaotic attractor Moebius strip Teacup Snail shell
Period–doubling δ1 = 0.67785 b1 = 2.437 δ1 = 0.625
Slow manifold 1 1 1
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The fixed point O(0, 0, 0) presents the same
stability in all three models, with attractive eigendi-
rections according to z′z and repulsive eigendirec-
tions according to x′x. The eigendirections of point
K(1, 0, 0) are attractive according to x′x and z′z in
all three models. Points I(x̂, ŷ, 0) and J(x∗, y∗, z∗)
behave as a stable and an unstable focus, respec-
tively, with I in the xy plane and J apart from the
xy plane. These models introduce rich and complex
dynamics, for which further study is required.

It also appears to be possible, in some domains
of parameter variation, to reduce the dimension of
the models, making it possible to take into account
the influence of the external medium by means of
time-dependent coefficients.
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