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i.e. the maximum per-capita growth rate decreases
from the bottom to the top of the food chain.

We can then consider the case in which:
a � d � f

or
0 < ξ � 1

and
0 <

1
ε
� 1

Under these conditions, system (12) becomes a sin-
gularly perturbed system of three time scales. The
rates of change for the prey, the predator and top-
predator from fast to intermediate to slow, respec-
tively [Deng, 2001]. Based on the works of Ramdani
et al. [2000], we consider system (12) to be a slow–
fast autonomous dynamic system and provide the
equation for the slow manifold on which the attrac-
tor lies. A state equation binding the three variables
can then be established.

2.4.1. Slow manifold equation based
on the orthogonality principle

Using the method developed by Ramdani et al.
[2000], we can obtain the slow manifold equation
defined by the layer of planes locally orthogonal to

the fast eigenvector on the left.

λ1(x, y, z)zλ1(x, y, z)(1, β(x, y, z), γ(x, y, z))

Let us call λ1(x, y, z) the fast eigenvalue of J (x, y,
z) and zλ1(1, β(x, y, z), γ(x, y, z)) the fast eigen-
vectors on the left of J (x, y, z). Transposing the
characteristic equation,

t(J (x, y, z))zλ1(x, y, z) = λ1(x, y, z)zλ1(x, y, z)

we can find β and γ.

β =
1

1
2
x− 1

2 y

(
λ1 − 1

ξ

(
1 − 2x − 1

2
x− 1

2 y

))

γ = β
y

1
2

ε(y
1
2 − δ2) − λ1

The slow manifold equation is thus given by:

ẋ + β(x, y, z) ẏ + γ(x, y, z) ż = 0 (23)

This leads to an implicit equation which can be
simulated numerically with Mathematica software
(Fig. 4).

Fig. 4. Slow manifold surface based on the orthogonality principle and phase portrait of the Volterra–Gause system (12) with
the same parameter values. In this figure, we can see the slow manifold on which the solutions of the system (12) are based.
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2.4.2. Slow manifold equation based
on the slow eigenvectors

The slow manifold equation could also have been
obtained as descibed by Ramdani et al. [2000], by
assuming that the three components of the system
(12) are always parallel to a plane containing the
two slow eigenvectors.

2.5. Conclusion

This work demonstrates the presence of chaos in a
Volterra–Gause model of predator–prey type. Nev-
ertheless, a more profound mathematical approach,
such as investigation of the possible existence of
Shilnikov orbits, should make it possible to confirm
the presence of chaos in this system. Our work has
also demonstrated that this model has five key char-
acteristics:

— Presence of limit cycles
— Existence of Hopf bifurcation
— Chaos by period-doubling cascade
— Slow–fast dynamics
— Existence of a slow manifold on which the

attractor lies.

The Volterra–Gause model is also similar to other
models, such as those of Rosenzweig–MacArthur
and Hastings and Powell. These similarites will be
considered in the next section.

3. Similarity to the
Rosenzweig–MacArthur and
Hastings–Powell Models

3.1. Rosenzweig–MacArthur model

We considered the Rosenzweig–MacArthur model
[1963] for a three trophic level interaction involving
a prey (x), a predator (y) and a top-predator (z).

dx

dt
= a

(
1 − λ

a
x
)
x − bxy

H1 + x
= xg(x) − byp(x)

dy

dt
= y

( dx

H1 + x
− c

)
− eyz

H2 + y
(24)

= y[−c + dp(x)] − ezq(y)

dz

dt
= z

( fy

H2 + y
− g

)
= z[−g + fq(y)]

This model includes a Verhulst [1838] logistic
prey (x), a Holling [1959] type 2 predator (y), and
a Holling [1959] type 2 top-predator (z). Parame-
ter a is the maximum per-capita growth rate for

the prey in the absence of predator and K = a/λ is
the carrying capacity.

The per-capita predation rate of the predator
has the Holling [1959] type 2 form.

p(x) =
bx

H1 + x

Parameter b is the maximum per-capita predation
rate and H1 is the semi-saturation constant for
which the per-capita predation rate is half its max-
imum, b/2. Parameter c is the per-capita natural
death rate for the predator. Parameter d is the max-
imum per-capita growth rate of the predator in the
absence of the top-predator. Parameters e and H2

are similar to b and H1, except that the predator y
is the prey for the top-predator z. Parameters f
and g are similar to c and d, except that the preda-
tor y is the prey for the top-predator z. Note that
the Rosenzweig–MacArthur model was developed
from the seminal works of Lotka [1925] and Volterra
[1926].

3.1.1. Dimensionless equations

With the following changes of variables and
parameters,

t → dt, x → λ

a
x, y → bλ

a2
y, z → beλ

da2
z,

ξ =
d

a
, ε =

f

d
, β1 =

λH1

a
, β2 =

H2

Y0
,

Y0 =
a2

bλ
, δ1 =

c

d
, δ2 =

g

f

Equations (24) are recast in a dimensionless form.

3.1.2. Biological hypothesis

We have made several assumptions to provide bio-
logical reality to our study:

— Positivity of the fixed points
— “Trophic time diversification hypothesis” such

that the maximum per-capita growth rate
decreases from the bottom to the top of the food
chain as follows

a > d > f > 0

We also assumed major changes over time

a � d � f > 0 (25)

Detailed comments on changes in variables and
parameters were made in the paper by Deng [2001].
For technical reasons, both y and z were rescaled
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by a factor of 0.25:

y → y

0.25
; z → z

0.25
Equations (24) have been reformulated in the

following dimensionless form:

ξ
dx

dt
= x

(
1 − x − y

β1 + x

)

dy

dt
= y

(
x

β1 + x
− δ1 − z

β2 + y

)
(26)

dz

dt
= εz

(
y

β2 + y
− δ2

)

3.1.3. Dynamic aspects

Under these conditions (25), the system (26)
becomes a singularly perturbed system of three
time scales, as previously pointed out by sev-
eral authors [Kuznetsov, 1995; Muratori & Rinaldi,
1992; Rinaldi & Muratori, 1992]. The rates of
change for the prey, the predator and the top-
predator range from fast to intermediate to slow,
respectively [Deng, 2001]. Based on the works of
Ramdani et al. [2000], we consider the system (26)
to be a slow–fast autonomous dynamic system and

provide the equation for the slow manifold on which
the attractor lies. A state equation binding the three
variables can also be established.

Nature and stability of the fixed points

For the set of values initially used in this simulation
(ξ = 0.1, β1 = 0.3, β2 = 0.1, δ1 = 0.1, δ2 = 0.62, ε =
0.3), we obtain four equilibrium points (of biological
significance) with the following eigenvalues:

O(0, 0, 0) → {10,−0.186,−0.1}
I(0.033, 1.289, 0) → {0.314194 + 0.878508i,

0.314194 − 0.878508i, 0.0429782}
J(0.859, 0.652, 0.674) → {−7.51526, 0.18173

+ 0.111807i, 0.18173 − 0.111807i}
K(1, 0, 0) → {−10, 0.669231,−0.186}

So according to the Lyapunov criterion, all these
points are unstable. The literal expression of the
fixed points highlights their dependance on the
parameters considered. We use this result below to
calculate the Hopf bifurcation parameter.

Phase portrait and vectorfield portrait

Figure 5 shows slow–fast dynamic features, with
long arrow for the fast features and short arrows
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Fig. 5. Phase and vectorfield portrait of the Rosenzweig–MacArthur system (26) with the same parameter values.
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for the slow features. This portrait consists of four
branches: two fast (the shorter branches) and two
slow (the longer branches). The pattern of change in
this attractor resembles that of the original Volterra
model. Initially, the fast part of the attractor,
the prey (x) rapidly increase in number, whereas
the number of predators (y) and top-predators (z)
remain very low. This situation is realistic. Close
to the equilibrium point I, the number of top-
predators suddenly decreases, triggering an increase
in the predator population. In the second part of
the attractor, a slow stage, the number of preda-
tors increases, as does the number of top-predators,
whereas the number of prey decreases. This part
of the attractor leads on to another slow stage,
during which the number of predators is maximal.
This results in a decrease in the number of prey.
In the fourth part of the attractor, a slow stage,
the number of top-predators continues to increase
while the number of predators decreases. As demon-
strated by Deng [2001], this attractor with a Moe-
bius strip shape displays chaotic behavior.

3.1.4. Slow manifold equation

Slow manifold equation based on the
orthogonality principle

As described in Sec. 2.4, the slow manifold equation
can be expressed as follows:

λ1(x, y, z)zλ1(1, β(x, y, z), γ(x, y, z))

Let us call λ1(x, y, z) the fast eigenvalue of J (x, y,
z) and zλ1(1, β(x, y, z), γ(x, y, z)) the fast eigen-
vectors to the left of J (x, y, z). Transposing the
characteristic equation,

t(J (x, y, z))zλ1(x, y, z) = λ1(x, y, z)zλ1(x, y, z)

we can find β and γ.

β =
(x + β1)2

β1y

[
λ1 − 1

ξ

(
1 − 2x − 0.25yβ1

(x + β1)2

)]

γ = β

0.25y
0.25y + β2

ε

(
0.25y

0.25y + β2
− δ2

)
− λ1

ẋ + β(x, y, z)ẏ + γ(x, y, z)ż = 0 (27)

Fig. 6. Slow manifold surface defined according to the
orthogonality principle. Nullcline surface corresponding
to the singular perturbation and phase portrait of the
Rosenzweig–MacArthur system (26), with the same param-
eter values. We seen here the slow manifold on which the
solutions of the system (26) are based.

This leads to an implicit equation which can be
simulated numerically with the same software. The
result is plotted in Fig. 6.

Slow manifold equation based on the
slow eigenvectors

The slow manifold equation can be also obtained by
means of the slow eigenvectors method.

3.1.5. Hopf bifurcation

We now investigate Andronov–Hopf bifurcation.
The first stage of this process involves determining
the parameter likely to produce such a bifurcation.
The two slow–fast parameters ξ and ε cannot gen-
erate Hopf bifurcation because they leave invariant
the fixed points, they cannot cancel the real part of
the eigenvalues of the functional Jacobian matrix
calculated for these points. It would also appear
to be most useful to consider a parameter coupling
the predator-prey and predator-top-predator equa-
tions. The parameters δ1 and δ2 may be involved
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in bifurcation. The parameter δ1 has the advan-
tage of leaving invariant the x-coordinate and the
y-coordinate of the singular point. The value of
the bifurcation parameter can be calculated numer-
ically as described in Sec. 2.3.11. Thus, a Hopf bifur-
cation occurs:

— If the real part of the conjugated complex eigen-
values of the functional Jacobian matrix is can-
celled for a certain value δ1 = δ1C

— If the derivative with respect to δ1 of this eigen-
value calculated in δ1C is non-zero

— If the other real eigenvalue evaluated in δ1 is
strictly negative.

The corresponding value of δ1 is calculated as
follows:

Re[λ2] = 0

The numerical solution of this polynomial equation
gives the following value:

δ1 = 0.683539

As the other two conditions are fulfilled, Hopf bifur-
cation occurs at

δ1 = 0.683539

Note: The Routh & Hurwitz theorem can also be
used to determine the value of the parameter δ1 at
which Hopf bifurcation occurs. Indeed, by clarify-
ing the characteristic polynomial of the Jacobian
matrix at point J, we obtain a polynomial of the
form: a0+a1λ+a2λ

2+a3λ
3 = 0. However, according

to the Routh and Hurwitz theorem, all the roots of
this polynomial have negative real parts when the
determinants D1,D2 and D3 are all positive. The
positivity of the first determinant D1 fulfills a con-
dition for δ1 making it possible to obtain the value
cited above (�0.68).

3.2. The Hastings–Powell model

By changing the variables followed in the
Rosenzweig–MacArthur [1963] model, we can
obtain the Hastings and Powell [1991] model

dx

dt
= a

(
1 − λ

a
x

)
x − bxy

H1 + x
= xg(x) − byp(x)

dy

dt
= y

(
dx

H1 + x
− c

)
− eyz

H2 + y

= y[−c + dp(x)] − ezq(y)

dz

dt
= z

(
fy

H2 + y
− g

)
= z[−g + fq(y)]

3.2.1. Dimensionless equations

With the following changes of variables and
parameters,

t → 1
a
t, x → a

λ
x, y → ad

λb
y, z → fba2

deλ
z

dx

dt
= x(1 − x) − a1xy

1 + β1x

dy

dt
= y

(
a1x

1 + β1x
− δ1

)
− a2yz

1 + β2y

dz

dt
= z

(
a2y

1 + β2y
− δ2

)
(28)

with

a1 =
d

λH1
, β1 =

a

λH1
, a2 =

bf

dλH2
,

β2 =
ad

bλH2
, δ1 =

c

a
, δ2 =

g

a
,

by choosing a set of “biologically reasonable”
parameters, system (28) becomes a singularly per-
turbed system of two time scales.

3.2.2. Dynamic aspects

The natural time scale of the interaction between
the predator y and the super-predator z (i.e. inter-
action at the higher trophic levels), is substan-
tially longer than that between the prey x and
the predator y. In other words, δ1 is much larger
than δ2.

Based on the works of Ramdani et al. [2000],
we consider the system (28) to be a slow–fast
autonomous dynamic system for which we can
determinate the equation of the slow manifold on
which the attractor lies. A state equation binding
the three variables can also be established.

Nature and stability of the fixed points

For the initial set of values used in this simu-
lation (ξ = 1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 =
0.01, ε = 1) we obtain four equilibrium points
(of biological significance) with the following
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eigenvalues:

O(0, 0, 0) → {1,−0.4,−0.01}
I(0.1052, 0.2354, 0) → {0.00600753, 0.0547368

+ 0.518656i, 0.0547368 − 0.518656i}
J(0.8192, 0.125, 9.8082) → {−0.61121, 0.038687

+ 0.0748173i, 0.038687 − 0.0748173i},
K(1, 0, 0) → {−1, 0.85,−0.01}

So according to the Lyapunov criterion, all these
points are unstable. The literal expression of the
fixed points highlights their dependance on the
parameters considered. This finding will be used
below, in the calculation of Hopf bifurcation.

Phase portrait

In Fig. 7 is plotted the phase potrait of the
so-called “up-side-down teacup” of the Hastings–
Powell [1991] model.

3.2.3. Slow manifold equation

Slow manifold equation based on the
orthogonality principle

As describe in Sec. 2.4, the equation of the slow
manifold can be expressed as follows:

λ1(x, y, z)zλ1(1, β(x, y, z), γ(x, y, z))

Let us call λ1(x, y, z) the fast eigenvalue of
J (x, y, z) and zλ1(1, β(x, y, z), γ(x, y, z)) the fast

eigenvectors to the left of J (x, y, z). Transposing
the characteristic equation,

t(J (x, y, z))zλ1(x, y, z) = λ1(x, y, z)zλ1(x, y, z)

we can find β and γ.

β =
(

(1 + xβ1)2

5y

)(
λ1 − (1 − 2x) +

5y
(1 + xβ1)2

)

γ = β
0.1y

0.1y − (1 + yβ2)(δ2 + λ1)

The slow manifold equation is thus given by:

ẋ + β(x, y, z)ẏ + γ(x, y, z)ż = 0 (29)

This leads to an implicit equation which can be sim-
ulated numerically with the same software (Fig. 8).

3.2.4. Hopf bifurcation

We will now focus on Andronov–Hopf bifurca-
tion. The first stage in this process involves iden-
tifying the parameter likely to produce such a
bifurcation. The slow–fast parameters ξ and ε
cannot generate bifurcation as they leave the
fixed points invariant and they cannot cancel the
real part of the eigenvalues of the functional
Jacobian matrix calculated for these points. It
would also be useful to consider a parameter cou-
pling the two predator–prey and predator-top-
predator equations. The parameters δ1 and δ2 may
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Fig. 7. Phase portrait of the Hastings and Powell system (28) with the same parameter values.



June 4, 2005 17:33 01293

1704 J.-M. Ginoux et al.

0 0.25 0.5 0.75 1

X

0
0.25

0.5
0.75

1
Y

7

8

9

10

11

Z

0.25
0.5

0.75
1

Fig. 8. Slow manifold surface based on the orthogonality principle and phase portrait of the Hastings and Powell system (28)
with the same parameter values.

also be considered. The parameter δ1 has the advan-
tage of leaving invariant the x-coordinate and the
y-coordinate of the singular point. It also modifies
the topology of the attractor, conferring on it the
Moebius strip shape of the Rosenzweig–MacArthur
model at a certain value.

We can therefore fix all the values of the param-
eters at the levels described above, except for δ1.
The technique described in Sec. 2.3.11 can then
be used for numerical calculation of the bifurcation
parameter value.

Thus, Hopf bifurcation occurs:

— If the real part of the complex conjugated eigen-
values of the functional Jacobian matrix is can-
celled for a certain value δ1 = δ1C

— If the derivative with respect to δ1 of this eigen-
value calculated in δ1C is nonzero

— If the other real eigenvalue evaluated in δ1 is
strictly negative.

The corresponding value of δ1 is calculated as
follows:

Re[λ2] = 0

The numerical solution of this polynomial equation
gives the following value:

δ2 = 0.7402

As the other two conditions are fullfilled, the Hopf
bifurcation occurs at

δ1 = 0.7402

In addition, by selecting β1 as the bifurcation
parameter and proceeding as described above, it
is possible to calculate the value of this parame-
ter with a high degree of precision. Indeed, can-
celling the part of the complex eigenvalues of the
functional jacobian matrix evaluated at the fixed
point I according to the parameter β1 generates the
value: β1 = 2.11379.

3.3. Similarity between the
various models

3.3.1. Volterra–Gause and
Rosenzweig–MacArthur

The Volterra–Gause model, as described above,
directly resembles the Rosenzweig–MacArthur
model for certain parameter values. Indeed, these
two models present similar dynamic behavior
(Fig. 9). Below the bifurcation threshold, we find
the overall shape of the chaotic attractor of the
Rosenzweig–MacArthur model.
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Fig. 9. Comparison of the Volterra–Gause model (for ξ = 0.964, ε = 1.1, δ1 = 0.518, δ2 = 0.415) and the Rosenzweig–
MacArthur model (for ξ = 0.1, β1 = 0.3, β2 = 0.1, δ1 = 0.1, δ2 = 0.62, ε = 0.3).
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Fig. 10. Phase portrait of the Volterra–Gause model (for ξ = 0.07, ε = 0.85, δ1 = 0.5, δ2 = 0.42).
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3.3.2. The Volterra–Gause and
Hastings–Powell models

The similarity between the Volterra–Gause model
and the Hastings–Powell model, with its famous
“up-side-down teacup” is more striking. Figures 10
and 11 show the basic teacup shape and the behav-
ior of each component x, y, z over time.

3.3.3. The Rosenzweig–MacArthur and
Hastings–Powell models

The bifurcation parameter δ1 chosen in Sec. 2.1.5
modifies the topology of the attractor of the
Rosenzweig–MacArthur model conferring on it, at
a certain value, the shape of the so-called “up-
side-down teacup” of the Hastings–Powell [1991]

Fig. 11. Comparison of the changes over time in the Volterra–Gause (for ξ = 0.07, ε = 0.85, δ1 = 0.5, δ2 = 0.42) and
Hastings–Powell models (for ξ = 1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 = 0.01, ε = 1).
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Fig. 12. Transition from the Rosenzweig–MacArthur model to the Hastings–Powell [1991] model.
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Fig. 13. Transition from the Hastings–Powell model to Rosenzweig–MacArthur model.

model. We can therefore fix all the parameters
at values cited above, except for δ1. Varying the
parameter δ1 up to a value of 0.3, preserves a limit
cycle, which becomes deformed, resulting in a pas-
sage from the Rosenzweig–MacArthur model to the
Hastings–Powell model (Fig. 12).

3.3.4. The Hastings–Powell and
Rosenzweig–MacArthur

The Hastings–Powell model can also be converted
to the Rosenzweig–MacArthur model. Varying the
bifurcation parameter δ1 modifies the topology of
the attractor, conferring on it the Moebius strip
shape of the Rosenzweig–MacArthur model at a cer-
tain value. We can therefore fix all the parameters
at the values cited above, except for δ1. Variation
of the parameter δ1 up to a value of 0.1, results in a

passage from the Hastings and Powell model to the
Rosenzweig–MacArthur model (Fig. 13).

4. Discussion

In this work, we have shown certain similarities
between the three models considered. The common
features of these models, the possibility of transi-
tion from one model to another by parameter vari-
ation and the differences between these models pro-
vide biologists with alternatives in their choice of
predator–prey model.

Despite differences in their functional respo-
nses, these models present striking similarities in
the nature and number of their fixed points, and
in their dynamic behavior: existence of a limit
cycle, occurrence of Hopf bifurcation, presence of
a chaotic attractor or period doubling cascades.

Dynamical
Features Rosenzweig–MacArthur Hastings–Powell Volterra–Gause

�
�

�
Models

O(0, 0, 0) I(x̂, ŷ, 0) O(0, 0, 0) I(x̂, ŷ, 0) O(0, 0, 0) I(x̂, ŷ, 0)Equilibrium points
J(x∗, y∗, z∗) K(1, 0, 0) J(x∗, y∗, z∗) K(1, 0, 0) J(x∗, y∗, z∗) K(1, 0, 0)

Attractional sink 2 2 2
Hopf bifurcation δ1 = 0.6835 δ1 = 0.7402 δ1 = 0.7474
Chaotic attractor Moebius strip Teacup Snail shell
Period–doubling δ1 = 0.67785 b1 = 2.437 δ1 = 0.625
Slow manifold 1 1 1
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The fixed point O(0, 0, 0) presents the same
stability in all three models, with attractive eigendi-
rections according to z′z and repulsive eigendirec-
tions according to x′x. The eigendirections of point
K(1, 0, 0) are attractive according to x′x and z′z in
all three models. Points I(x̂, ŷ, 0) and J(x∗, y∗, z∗)
behave as a stable and an unstable focus, respec-
tively, with I in the xy plane and J apart from the
xy plane. These models introduce rich and complex
dynamics, for which further study is required.

It also appears to be possible, in some domains
of parameter variation, to reduce the dimension of
the models, making it possible to take into account
the influence of the external medium by means of
time-dependent coefficients.
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