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The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics
concepts to chaotic dynamical systems study. Thus, the local metric properties of curvature and
torsion will directly provide the analytical expression of the slow manifold equation of slow-fast
autonomous dynamical systems starting from kinematics variables (velocity, acceleration and
over-acceleration or jerk).

The attractivity of the slow manifold will be characterized thanks to a criterion proposed
by Henri Poincaré. Moreover, the specific use of acceleration will make it possible on the one
hand to define slow and fast domains of the phase space and on the other hand, to provide
an analytical equation of the slow manifold towards which all the trajectories converge. The
attractive slow manifold constitutes a part of these dynamical systems attractor. So, in order to
propose a description of the geometrical structure of attractor, a new manifold called singular
manifold will be introduced. Various applications of this new approach to the models of Van der
Pol, cubic-Chua, Lorenz, and Volterra–Gause are proposed.
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1. Introduction

There are various methods to determine the
slow manifold analytical equation of slow-fast
autonomous dynamical systems (S-FADS), or
autonomous dynamical systems considered as slow-
fast (CAS-FADS). A classical approach based on
the works of Andronov [1966] led to the famous
singular approximation. For ε �= 0, another method
called: tangent linear system approximation, devel-
oped by Rossetto et al. [1998], consists in using
the presence of a “fast” eigenvalue in the func-
tional jacobian matrix of a (S-FADS) or of a (CAS-
FADS). Within the framework of application of
the Tihonov’s theorem [1952], this method uses
the fact that in the vicinity of the slow manifold

the eigenmode associated in the “fast” eigenvalue is
evanescent. Thus, the tangent linear system approx-
imation method, presented in the appendix, pro-
vides the slow manifold analytical equation of a
dynamical system according to the “slow” eigenvec-
tors of the tangent linear system, i.e. according to
the “slow” eigenvalues. Nevertheless, according to
the nature of the “slow” eigenvalues (real or com-
plex conjugated) the plot of the slow manifold ana-
lytical equation may be difficult even impossible.
Also to solve this problem it was necessary to make
the slow manifold analytical equation independent
of the “slow” eigenvalues. This could be carried out
by multiplying the slow manifold analytical equa-
tion of a two-dimensional dynamical system by a
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“conjugated” equation, that of a three-dimensional
dynamical system by two “conjugated” equations.
In each case, the slow manifold analytical equation
independent of the “slow” eigenvalues of the tangent
linear system is presented in the appendix.

The new approach proposed in this article is
based on the use of certain properties of Differential
Geometry and Mechanics. Thus, the metric proper-
ties of curvature and torsion have provided a direct
determination of the slow manifold analytical equa-
tion independently of the “slow” eigenvalues. It has
been demonstrated that the equation thus obtained
is completely identical to that which the tangent
linear system approximation method provides.

The attractivity or repulsivity of the slow man-
ifold could be characterized while using a crite-
rion proposed by Henri Poincaré [1881] in a report
entitled “Sur les courbes définies par une equation
différentielle”.

Moreover, the specific use of the instantaneous
acceleration vector allowed a kinematic interpreta-
tion of the evolution of the trajectory curves in the
vicinity of the slow manifold by defining the slow
and fast domains of the phase space.

At last, two new manifolds called singular were
introduced. It was shown that the first, the singu-
lar approximation of acceleration, constitutes a first
approximation of the slow manifold analytical equa-
tion of a (S-FADS) and is completely equivalent to
the equation provided by the method of the succes-
sive approximations developed by Rossetto [1986]
while the second, the singular manifold, proposes an
interpretation of the geometrical structure of these
dynamical systems attractor.

2. Dynamical System, Slow-Fast
Autonomous Dynamical System
(S-FADS), Considered as Slow-Fast
Autonomous Dynamical System
(CAS-FADS)

The aim of this section is to recall definitions and
properties of (S-FADS) and of (CAS-FADS).

2.1. Dynamical system

In the following we consider a system of differential
equations defined in a compact E included in R:

dX
dt

= �(X) (1)

with

X = [x1, x2, . . . , xn]t ∈ E ⊂ R
n

and

�(X) = [f1(X), f2(X), . . . , fn(X)]t ∈ E ⊂ R
n

The vector �(X) defines a velocity vector field
in E whose components fi which are supposed to be
continuous and infinitely differentiable with respect
to all xi and t, i.e. are C∞ functions in E and with
values included in R, satisfy the assumptions of the
Cauchy–Lipschitz theorem. For more details, see for
example [Coddington & Levinson, 1955]. A solu-
tion of this system is an integral curve X(t) tangent
to � whose values define the states of the dynami-
cal system described by Eq. (1). Since none of the
components fi of the velocity vector field depends
here explicitly on time, the system is said to be
autonomous.

Note: In certain applications, it would be sup-
posed that the components fi are Cr functions in
E and with values in R, with r ≥ n.

2.2. Slow-fast autonomous dynamical
system (S-FADS)

A (S-FADS) is a dynamical system defined under
the same conditions as above but comprising a small
multiplicative parameter ε in one or several compo-
nents of its velocity vector field:

dX
dt

= �(X) (2)

with
dX
dt

=
[
ε
dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

]t

∈ E ⊂ R
n

0 < ε � 1

The functional jacobian of a (S-FADS) defined
by (2) has an eigenvalue called “fast”, i.e. with a
large real part on a large domain of the phase space.
Thus, a “fast” eigenvalue is expressed like a polyno-
mial of valuation −1 in ε and the eigenmode which
is associated in this “fast” eigenvalue is said:

• “evanescent” if it is negative,
• “dominant” if it is positive.

The other eigenvalues called “slow” are
expressed like a polynomial of valuation 0 in ε.

2.3. Dynamical system considered
as slow-fast (CAS-FADS)

It has been shown [Rossetto et al., 1998] that
a dynamical system defined under the same con-
ditions as (1) but without small multiplicative
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parameters in one of the components of its veloc-
ity vector field, and consequently without singu-
lar approximation, can be considered as slow -fast if
its functional jacobian matrix has at least a “fast”
eigenvalue, i.e. with a large real part on a large
domain of the phase space.

3. New Approach of the Slow
Manifold of Dynamical
Systems

This approach consists in applying certain con-
cepts of Mechanics and Differential Geometry to
the study of dynamical systems (S-FADS or CAS-
FADS). Mechanics will provide an interpretation of
the behavior of the trajectory curves, integral of
a (S-FADS) or of a (CAS-FADS), during the var-
ious phases of their motion in terms of kinemat-
ics variables: velocity and acceleration. The use of
Differential Geometry, more particularly the local
metric properties of curvature and torsion, will
make it possible to directly determine the analytical
equation of the slow manifold of (S-FADS) or of
(CAS-FADS).

3.1. Kinematics vector functions

Since our proposed approach consists in using the
Mechanics formalism, it is first necessary to define
the kinematics variables needed for its development.
Thus, we can associate the integral of the system (1)
or (2) with the coordinates, i.e. with the position,
of a moving point M at the instant t. This inte-
gral curve defined by the vector function X(t) of
the scalar variable t represents the trajectory curve
of the moving point M .

3.1.1. Instantaneous velocity vector

As the vector function X(t) of the scalar variable t
represents the trajectory of M , the total derivative
of X(t) is the vector function V(t) of the scalar vari-
able t which represents the instantaneous velocity
vector of the mobile M at the instant t; namely:

V(t) =
dX
dt

= �(X) (3)

The instantaneous velocity vector V(t) is sup-
ported by the tangent to the trajectory curve.

3.1.2. Instantaneous acceleration vector

As the instantaneous vector function V(t) of the
scalar variable t represents the velocity vector of M ,

the total derivative of V(t) is the vector function
γ(t) of the scalar variable t which represents the
instantaneous acceleration vector of the mobile M
at the instant t; namely:

γ(t) =
dV
dt

(4)

Since the functions fi are supposed to be C∞
functions in a compact E included in R

n, it is pos-
sible to calculate the total derivative of the vec-
tor field V(t) defined by (1) or (2). By using the
derivatives of composite functions, we can write the
derivative in the sense of Fréchet:

dV
dt

=
d�
dX

dX
dt

(5)

By noticing that d�/dX is the functional
jacobian matrix J of the system (1) or (2), it follows
from Eqs. (4) and (5) that we have the following
equation which plays a very important role:

γ = JV (6)

3.1.3. Tangential and normal components
of the instantaneous acceleration
vector

By making the use of the Frénet [1847] frame, i.e. a
frame built starting from the trajectory curve X(t)
directed towards the motion of the mobile M . Let
us define τ the unit tangent vector to the trajectory
curve in M , ν the unit normal vector, i.e. the prin-
cipal normal in M directed towards the interior of
the concavity of the curve and β the unit binormal
vector to the trajectory curve in M so that the tri-
hedron (τ ,ν,β) is direct. Since the instantaneous
velocity vector V is tangent to any point M to the
trajectory curve X(t), we can construct a unit tan-
gent vector as follows:

τ =
V
‖V‖ (7)

In the same manner, we can construct a unit
binormal, as:

β =
V ∧ γ

‖V ∧ γ‖ (8)

and a unit normal vector, as:

ν = β ∧ τ =
τ̇

‖τ̇‖ =
V⊥

‖V⊥‖ (9)

with

‖V‖ = ‖V⊥‖ (10)
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where the vector V⊥ represents the normal vec-
tor to the instantaneous velocity vector V directed
towards the interior of the concavity of the tra-
jectory curve and where the dot (·) represents
the derivative with respect to time. Thus, we can
express the tangential and normal components of
the instantaneous acceleration vector γ as:

γτ =
γ · V
‖V‖ (11)

γν =
‖γ ∧V‖
‖V‖ (12)

By noticing that the variation of the Euclidean
norm of the instantaneous velocity vector V can be
written:

d‖V‖
dt

=
γ ·V
‖V‖ (13)

And while comparing Eqs. (11) and (12) we
deduce that

d‖V‖
dt

= γτ (14)

Taking account of Eq. (10) and using the def-
initions of the scalar and vector products, the
expressions of the tangential (11) and normal (12)
components of the instantaneous acceleration vec-
tor γ can be finally written:

γτ =
γ ·V
‖V‖ =

d‖V‖
dt

= ‖γ‖cos(γ̂,V) (15)

γν =
‖γ ∧V‖
‖V‖ = ‖γ‖|sin(γ̂,V)| (16)

Note: While using the Lagrange identity :
‖γ ∧ V‖2 + (γ · V)2 = ‖γ‖2 · ‖V‖2, one finds easily
the norm of the instantaneous acceleration vector
γ(t).

‖γ‖2 = γ2
τ + γ2

ν =
‖γ ∧V‖2

‖V‖2
+

(γ · V)2

‖V‖2

=
‖γ ∧ V‖2 + (γ ·V)2

‖V‖2
= ‖γ‖2

3.2. Trajectory curve properties

In this approach the use of Differential Geometry
will allow a study of the metric properties of the
trajectory curve, i.e. curvature and torsion whose
definitions are recalled in this section. One will
find, for example, in [Delachet, 1964; Struik, 1934;
Kreyzig, 1959] or [Gray, 2006] a presentation of
these concepts.

3.2.1. Parametrization of the
trajectory curve

The trajectory curve X(t) integral of the dynami-
cal system defined by (1) or (2), is described by the
motion of a current point M position which depends
on a variable parameter: the time. This curve can
also be defined by its parametric representation
relative in a frame:

x1 = F1(t), x2 = F2(t), . . . , xn = Fn(t)

where the Fi functions are continuous, C∞ func-
tions (or Cr+1 according to the above assumptions)
in E and with values in R. Thus, the trajectory
curve X(t) integral of the dynamical system defined
by (1) or (2), can be considered as a plane curve
or as a space curve having certain metric proper-
ties like curvature and torsion which will be defined
below.

3.2.2. Curvature of the trajectory curve

Let us consider the trajectory curve X(t) having
in M an instantaneous velocity vector V(t) and
an instantaneous acceleration vector γ(t), the cur-
vature, which expresses the rate of changes of the
tangent to the trajectory curve, defined by:

1
� =

‖γ ∧ V‖
‖V‖3

=
γν

‖V‖2
(17)

where � represents the radius of curvature.

Note: The location of the points where the local
curvature of the trajectory curve is null represents
the location of the points of analytical inflexion, i.e.
the location of the points where the normal compo-
nent of the instantaneous acceleration vector γ(t)
vanishes.

3.2.3. Torsion of the trajectory curve

Let us consider the trajectory curve X(t) hav-
ing in M an instantaneous velocity vector V(t),
an instantaneous acceleration vector γ(t), and an
instantaneous over-acceleration vector γ̇, the tor-
sion, which expresses the difference between the
trajectory curve and a plane curve, defined by:

1
	 = − γ̇ · (γ ∧ V)

‖γ ∧ V‖2
(18)

where 	 represents the radius of torsion.

Note: A trajectory curve whose local torsion is
null is a curve whose osculating plane is stationary.
In this case, the trajectory curve is a plane curve.
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3.3. Application of these properties
to the determination of the
slow manifold analytical
equation

In this section it will be demonstrated that the use
of the local metric properties of curvature and tor-
sion, resulting from Differential Geometry, provide
the analytical equation of the slow manifold of a
(S-FADS) or a (CAS-FADS) of dimension two or
three. Moreover, it will be established that the slow
manifold analytical equation thus obtained is com-
pletely identical to that provided by the tangent
linear system approximation method presented in
the appendix.

3.3.1. Slow manifold equation of a
two-dimensional dynamical system

Proposition 3.1. The location of the points where
the local curvature of the trajectory curves integral
of a two-dimensional dynamical system defined by
(1) or (2) is null, provides the slow manifold ana-
lytical equation associated to this system.

Analytical Proof of Proposition 3.1. The vanishing
condition of the curvature provides:

1
� =

‖γ ∧ V‖
‖V‖3

= 0 ⇔ γ ∧ V = 0 (19)

By using the expression (6), the coordinates of
the acceleration vector are written:

γ

(
ẍ

ÿ

)
=

(
aẋ + bẏ

cẋ + dẏ

)
The equation above is written:

cẋ2 − (a − d)ẋẏ − bẏ2 = 0

This equation is absolutely identical to Eq.
(A.27) obtained by the tangent linear system
approximation method. �

Geometrical Proof of Proposition 3.1. The vanishing
condition of the curvature provides:

1
� =

‖γ ∧ V‖
‖V‖3

= 0 ⇔ γ ∧ V = 0

The tangent linear system approximation
makes it possible to write that:

V = αYλ1 + βYλ2 ≈ βYλ2

While replacing in the expression (6) we obtain:

γ = JV = J(βYλ2) = βλ2Yλ2 = λ2V

This shows that the instantaneous velocity and
acceleration vectors are collinear, which results in:

γ ∧ V = 0 �

3.3.2. Slow manifold equation of a
three-dimensional dynamical system

Proposition 3.2. The location of the points where
the local torsion of the trajectory curves integral of a
three-dimensional dynamical system defined by (1)
or (2) is null, provides the slow manifold analytical
equation associated to this system.

Analytical Proof of Proposition 3.2. The vanishing
condition of the torsion provides:

1
	 = − γ̇ · (γ ∧ V)

‖γ ∧ V‖2
= 0 ⇔ γ̇ · (γ ∧ V) = 0 (20)

The first corollary inherent in the tangent linear
system approximation method implies to suppose
that the functional jacobian matrix is stationary.
That is to say

dJ

dt
= 0

Derivative of the expression (6) provides:

γ̇ = J
dV
dt

+
dJ

dt
V = Jγ +

dJ

dt
V

= J2V +
dJ

dt
V ≈ J2V

The equation above is written as:

(J2V) · (γ ∧ V) = 0

By developing this equation one finds in the
long term Eq. (A.34) obtained by the tangent linear
system approximation method. The two equations
are thus absolutely identical. �
Geometrical Proof of Proposition 3.2. The tangent
linear system approximation makes it possible to
write that:

V = αYλ1 + βYλ2 + δYλ3 ≈ βYλ2 + δYλ3

While replacing in the expression (6) we obtain:

γ = JV = J(βYλ2 + δYλ3) = βλ2Yλ2 + δλ3Yλ3

According to what precedes, the over-
acceleration vector is written as:

γ̇ ≈ J2V

While replacing the velocity by its expression
we have:

γ̇ ≈ J2(βYλ2 + δYλ3) = βλ2
2Yλ2 + δλ2

3Yλ3
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Thus it is noticed that:

V = βYλ2 + δYλ3

γ = βλ2Yλ2 + δλ3Yλ3

γ̇ = βλ2
2Yλ2 + δλ2

3Yλ3

This demonstrates that the instantaneous
velocity, acceleration and over-acceleration vectors
are coplanar, which results in:

γ̇ · (γ ∧ V) = 0

This equation represents the location of the
points where torsion is null. The identity of the two
methods is thus established. �

Note: Main results of this study are summarized
in Table 1 presented below. Abbreviations mean:

— T.L.S.A.: Tangent Linear System Approxima-
tion

— A.D.G.F.: Application of the Differential Geom-
etry Formalism

In the first report entitled the “Courbes définies
par une équation différentielle” Henri Poincaré
[1881] proposed a criterion making it possible to
characterize the attractivity or the repulsivity of
a manifold. This criterion is recalled in the next
section.

3.3.3. Attractive, repulsive manifolds

Proposition 3.3. Let X(t) be a trajectory curve
having in M an instantaneous velocity vector V(t)
and let (V) be a manifold (a curve in dimension two,
a surface in dimension three) defined by the implicit
equation φ = 0 whose normal vector η = ∇φ is
directed towards the outside of the concavity of this
manifold.

• If the scalar product between the instantaneous
velocity vector V(t) and the normal vector η =
∇φ is positive, the manifold is said attractive
with respect to this trajectory curve

Table 1. Determination of the slow manifold analytical
equation.

T.L.S.A. A.D.G.F.

Dimension 2 V ∧ Yλ2 = 0
1

� =
‖γ∧V‖
‖V‖3 = 0

Dimension 3 V · (Yλ2 ∧ Yλ3) = 0
1

� = − γ̇·(γ∧V)
‖γ∧V‖2 = 0

• If it is null, the trajectory curve is tangent to this
manifold.

• If it is negative, the manifold is said repulsive.

This scalar product which represents the total
derivative of φ constitutes a new manifold (V̇) which
is the envelope of the manifold (V).

Proof. Let us consider a manifold (V) defined by
the implicit equation φ(x, y, z) = 0.

The normal vector directed towards the outside
of the concavity of the curvature of this manifold is
written as:

η = ∇φ =



∂φ

∂x

∂φ

∂y

∂φ

∂z


(21)

The instantaneous velocity vector of the trajec-
tory curve is defined by (1):

V =



dx

dt

dy

dt

dz

dt


The scalar product between these two vectors

is written as:

V · ∇φ =
∂φ

∂x

dx

dt
+

∂φ

∂y

dy

dt
+

∂φ

∂z

dz

dt
(22)

By noticing that Eq. (22) represents the total
derivative of φ, the envelope theory makes it possi-
ble to state that the new manifold (V̇) defined by
this total derivative constitutes the envelope of the
manifold (V) defined by the equation φ = 0. The
demonstration in dimension two of this Proposition
results from what precedes. �

3.3.4. Slow, fast domains

In the Mechanics formalism, the study of nature
of motion of a mobile M consists in being inter-
ested in the variation of the Euclidean norm of its
instantaneous velocity vector V, i.e. in the tangen-
tial component γτ of its instantaneous acceleration
vector γ. The variation of the Euclidean norm of the
instantaneous velocity vector V depends on the sign
of the scalar product between the instantaneous
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velocity vector V and the instantaneous accelera-
tion vector γ, i.e. the angle formed by these two
vectors. Thus if, γ · V > 0, the variation of the
Euclidean norm of the instantaneous velocity vector
V is positive and the Euclidean norm of the instan-
taneous velocity vector V increases. The motion is
accelerated, it is in its fast phase. If γ · V = 0,
the variation of the Euclidean norm of the instan-
taneous velocity vector V is null and the Euclidean
norm of the instantaneous velocity vector V is con-
stant. The motion is uniform, it is in a phase of
transition between its fast and slow phases. More-
over, the instantaneous velocity vector V is perpen-
dicular to the instantaneous acceleration vector γ.
If, γ · V < 0, the variation of the Euclidean norm
of the instantaneous velocity vector V is negative
and the Euclidean norm of the instantaneous veloc-
ity vector V decreases. The motion is decelerated.
It is in its slow phase.

Definition 3.1. The domain of the phase space in
which the tangential component γτ of the instan-
taneous acceleration vector γ is negative, i.e. the
domain in which the system is decelerating is called
slow domain.

The domain of the phase space in which the
tangential component γτ of the instantaneous accel-
eration vector γ is positive, i.e. the domain in which
the system is accelerating is called fast domain.

Note: On the one hand, if the (S-FADS) studied
comprises only one small multiplicative parameter
ε in one of the components of its velocity vectors
field, these two domains are complementary. The
location of the points belonging to the domain of
the phase space where the tangential component γτ

of the instantaneous acceleration vector γ is can-
celled, delimits the boundary between the slow and
fast domains. On the other hand, the slow manifold
of a (S-FADS) or a (CAS-FADS) necessarily belongs
to the slow domain.

4. Singular Manifolds

The use of Mechanics made it possible to introduce
a new manifold called singular approximation of the
acceleration which provides an approximate equa-
tion of the slow manifold of a (S-FADS).

4.1. Singular approximation of
the acceleration

The singular perturbations theory [Andronov et al.,
1966] have provided the zero order approximation

in ε, i.e. the singular approximation, of the slow
manifold equation associated in a (S-FADS) com-
prising a small multiplicative parameter ε in one
of the components of its velocity vector field V. In
this section, it will be demonstrated that the sin-
gular approximation associated in the acceleration
vector field γ constitutes the first-order approxima-
tion in ε of the slow manifold equation associated
with a (S-FADS) comprising a small multiplicative
parameter ε in one of the components of its velocity
vector field V and consequently a small multiplica-
tive parameter ε2 in one of the components of its
acceleration vector field γ.

Proposition 4.1. The manifold equation associated
in the singular approximation of the instantaneous
acceleration vector γ of a (S-FADS ) constitutes the
first-order approximation in ε of the slow manifold
equation.

Proof of Proposition 4.1 for Two-Dimensional
(S-FADS). In dimension two, Proposition 3.1
results in a collinearity condition (19) between the
instantaneous velocity vector V and the instanta-
neous acceleration vector γ. While posing:

dx

dt
= ẋ and

dy

dt
= ẏ = g

The slow manifold equation of a (S-FADS) is
written as:(

∂g

∂x

)
ẋ2 − g

(
1
ε

∂f

∂x
− ∂g

∂y

)
ẋ −

(
1
ε

∂f

∂y

)
g2 = 0

(23)

This quadratic equation in ẋ has the following
discriminant:

∆ = g2

(
1
ε

∂f

∂x
− ∂g

∂y

)2

+ 4
(

∂g

∂x

)(
1
ε

∂f

∂y

)
g2 = 0

The Taylor series of its square root up to terms
of order 1 in ε is written as:

√
∆ ≈ 1

ε

∣∣∣∣g(
∂f

∂x

)∣∣∣∣
1 +

ε(
∂f

∂x

)2

[
2
(

∂g

∂x

)(
∂f

∂y

)

−
(

∂g

∂y

)(
∂f

∂x

)]
+ O(ε2)


Taking into account what precedes, the solution

of Eq. (23) is written as:
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ẋ ≈ −g

(
∂f

∂y

)
(

∂f

∂x

) + O(ε) (24)

This equation represents the second-order
approximation in ε of the slow manifold equa-
tion associated with the singular approximation.
According to Eq. (6), the instantaneous accelera-
tion vector γ is written as:

γ =


ε
d2x

dt2

d2y

dt2

 =


∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

∂g

∂x

dx

dt
+

∂g

∂y

dy

dt


The singular approximation of the acceleration

provides the equation:

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= 0

While posing:

dx

dt
= ẋ and

dy

dt
= ẏ = g

We obtain:

ẋ = −g

(
∂f

∂y

)
(

∂f

∂x

) (25)

By comparing this expression with Eq. (24)
which constitutes the second-order approximation
in ε of the slow manifold equation, we deduce from
Eq. (25) that it represents the first-order approxi-
mation in ε of the slow manifold equation. It has
also been demonstrated that the singular approxi-
mation of the acceleration constitutes the first of the
successive approximations developed in [Rossetto,
1986]. �
Proof of Proposition 4.1 for Three-Dimensional (S-
FADS). In dimension three, Proposition 3.2 results
in a coplanarity condition (20) between the instan-
taneous velocity vector V, the instantaneous accel-
eration vector γ and the instantaneous over-
acceleration vector γ̇. The slow manifold equation
of a (S-FADS) is written as:

d3x

dt3

∣∣∣∣∣∣∣∣∣
dy

dt

d2y

dt2

dz

dt

d2z

dt2

∣∣∣∣∣∣∣∣∣ +
d3y

dt3

∣∣∣∣∣∣∣∣∣
d2x

dt2
dx

dt

d2z

dt2
dz

dt

∣∣∣∣∣∣∣∣∣

+
d3z

dt3

∣∣∣∣∣∣∣∣∣
dx

dt

d2x

dt2

dy

dt

d2y

dt2

∣∣∣∣∣∣∣∣∣ = 0 (26)

In order to simplify, let us replace the three
determinants by:

∆1 =

∣∣∣∣∣∣∣∣∣
dy

dt

d2y

dt2

dz

dt

d2z

dt2

∣∣∣∣∣∣∣∣∣ ; ∆2 =

∣∣∣∣∣∣∣∣∣
d2x

dt2
dx

dt

d2z

dt2
dz

dt

∣∣∣∣∣∣∣∣∣ ;

∆3 =

∣∣∣∣∣∣∣∣∣
dx

dt

d2x

dt2

dy

dt

d2y

dt2

∣∣∣∣∣∣∣∣∣
Equation (26) then will be written as:

(
...
x)∆1 + (

...
y)∆2 + (

...
z )∆3 = 0 (27)

While posing:

dx

dt
= ẋ,

dy

dt
= ẏ = g,

dz

dt
= ż = h

By dividing Eq. (27) by (z̈), we have

(ẋÿ − ẍẏ) +
1

(
...
z )

[(
...
x)∆1 + (

...
y)∆2] = 0 (28)

First term of Eq. (28) is written as:

(ẋÿ − ẍẏ) =
(

∂g

∂x

)
ẋ2 − g

(
1
ε

∂f

∂x
− ∂g

∂y
− ∂g

∂z

h

g

)
ẋ

− g2

ε

(
∂f

∂y
+

∂f

∂z

h

g

)
(29)

For homogeneity reasons let us pose:

g2G =
1

(
...
z )

[(
...
x)∆1 + (

...
y)∆2]

Equation (28) is written:(
∂g

∂x

)
ẋ2 − g

(
1
ε

∂f

∂x
− ∂g

∂y
− ∂g

∂z

h

g

)
ẋ

− g2

ε

(
∂f

∂y
+

∂f

∂z

h

g

)
+ g2G = 0 (30)

This quadratic equation in ẋ has the following
discriminant :
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∆ = g2

[
1
ε

∂f

∂x
−

(
∂g

∂y
+

∂g

∂z

h

g

)]2

+ 4g2

(
∂g

∂x

)[
1
ε

(
∂f

∂y
+

∂f

∂z

h

g

)
− G

]
The Taylor series of its square root up to terms

of order 1 in ε is written as:

√
∆ ≈ 1

ε

∣∣∣∣g(
∂f

∂x

)∣∣∣∣
1 +

ε(
∂f

∂x

)2

[
2
(

∂g

∂x

)(
∂f

∂y

+
∂f

∂z

h

g

)
−

(
∂g

∂y
+

∂g

∂z

h

g

)(
∂f

∂x

)]
+ O(ε2)


Taking into account what precedes, the solution

of Eq. (30) is written as:

ẋ ≈ −g

(
∂f

∂y
+

∂f

∂z

h

g

)
(

∂f

∂x

) + O(ε) (31)

This equation represents the second-order
approximation in ε of the slow manifold equa-
tion associated with the singular approximation.
According to Eq. (6), the instantaneous accelera-
tion vector γ is written as:

γ =



ε
d2x

dt2

d2y

dt2

d2z

dt2


=



∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

∂g

∂x

dx

dt
+

∂g

∂y

dy

dt
+

∂g

∂z

dz

dt

∂h

∂x

dx

dt
+

∂h

∂y

dy

dt
+

∂h

∂z

dz

dt


The singular approximation of the acceleration

provides the equation:

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
= 0

While posing:

dx

dt
= ẋ,

dy

dt
= ẏ = g and

dz

dt
= ż = h

We obtain:

ẋ = −g

(
∂f

∂y
+

∂f

∂z

h

g

)
(

∂f

∂x

) (32)

By comparing this expression with Eq. (31)
which constitutes the second-order approximation
in ε of the slow manifold equation, we deduce from
Eq. (32) that it represents the first-order approxi-
mation in ε of the slow manifold equation.

It has also been demonstrated that the singular
approximation of the acceleration constitutes the
first of the successive approximations developed in
[Rossetto, 1986]. �

The use of the criterion proposed by H.
Poincaré (Proposition 3) made it possible to char-
acterize the attractivity of the slow manifold of a
(S-FADS) or a (CAS-FADS). Moreover, the pres-
ence in the phase space of an attractive slow man-
ifold, in the vicinity of which the trajectory curves
converge, constitutes a part of the attractor.

The singular manifold presented in the next
section proposes a description of the geometrical
structure of the attractor.

4.2. Singular manifold

The denomination of singular manifold comes from
the fact that this manifold plays the same role with
respect to the attractor as a singular point with
respect to the trajectory curve.

Proposition 4.2. The singular manifold is defined
by the intersection of slow manifold of equation
φ = 0 and an unspecified Poincaré section (Σ) made
in its vicinity. Thus, it represents the location of the
points satisfying:

φ ∩ Σ = 0 (33)

This manifold of codimension one is a subman-
ifold of the slow manifold.

In dimension two, the singular manifold is
reduced to a point.

In dimension three, it is a “line” or more exactly
a “curve”.

The location of the points obtained by integra-
tion in a given time of initial conditions taken on
this manifold constitutes a submanifold also belong-
ing to the attractor generated by the dynamical sys-
tem. The whole of these manifolds corresponding
to various points of integration makes it possible to
reconstitute the attractor by deployment of these
singular manifolds.

The concept of deployment will be illustrated
in Sec. 5.4.
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5. Applications

5.1. Van der Pol model

The oscillator of B. Van der Pol [1926] is a second-
order system with nonlinear frictions which can be
written as:

ẍ + α(x2 − 1)ẋ + x = 0

The particular form of the friction which can be
carried out by an electric circuit causes a decrease
of the amplitude of the great oscillations and an
increase of the small. There are various ways of writ-
ing the previous equation like a first-order system.
One of them is:

ẋ = α

(
x + y − x3

3

)
ẏ = −x

α

When α becomes very large, x becomes a “fast”
variable and y a “slow” variable. In order to analyze
the limit α → ∞, we introduce a small parameter
ε = 1/α2 and a “slow time” t′ = t/α =

√
εt. Thus,

the system can be written as:

V


ε
dx

dt

dy

dt

 = �
(

f(x, y)
g(x, y)

)
=

x + y − x3

3

−x

 (34)

with ε a positive real parameter

ε = 0.05

where the functions f and g are infinitely differen-
tiable with respect to all xi and t, i.e. C∞ functions
in a compact E are included in R

2 and with val-
ues in R. Moreover, the presence of a small multi-
plicative parameter ε in one of the components of
its velocity vector field V ensures that the system
(34) is a (S-FADS). We can thus apply the method
described in Sec. 3, i.e. Differential Geometry. The
instantaneous acceleration vector γ is written as:

γ


d2x

dt2

d2y

dt2

 =
d�
dt


1
ε

(
dx

dt
+

dy

dt
− x2 dx

dt

)
−dx

dt

 (35)

Proposition 3.1 leads to:

1
� =

‖γ ∧ V‖
‖V‖3

= 0 ⇔ γ ∧ V = 0 ⇔ ẍẏ − ẋÿ = 0

We obtain the following implicit equation:
1

9ε2
[9y2 + (9x + 3x3)y + 6x4 − 2x6 + 9x2ε] = 0

(36)

Since this equation is quadratic in y, we can
solve it in order to plot y according to x.

y1,2 = −x3

6
− x

2
± x

2

√
x4 − 2x2 + 1 − 4ε (37)

Figure 1 shows the plot of the slow manifold
equation (37) of the Van der Pol system with ε =
0.05 by using Proposition 3.1, i.e. the collinear-
ity condition between the instantaneous velocity
vector V and the instantaneous acceleration vec-
tor γ, i.e. the location of the points where the
curvature of the trajectory curves is cancelled.
Moreover, Definition 1 makes it possible to delimit
the area of the phase plane in which, the scalar
product between the instantaneous velocity vector
V and the instantaneous acceleration vector γ is
negative, i.e. where the tangential component γτ

of its instantaneous acceleration vector γ is nega-
tive. We can thus graphically distinguish the slow
domain of the fast domain (in blue), i.e. the domain
of stability of the trajectories.

The blue part of Fig. 1 corresponds to the
domain where the variation of the Euclidean norm
of the instantaneous velocity vector V is posi-
tive, i.e. where the tangential component of the

-2 -1 1 2

-1

-0.5

0.5

1

-2 -1 1 2

-1

-0.5

0.5

1

Fig. 1. Slow manifold (in blue) and stable domain of the
Van der Pol system (in white).
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Fig. 2. Zoom of the stable part of the B. Van der Pol system.

instantaneous acceleration vector γ, is positive. Let
us take note that, as soon as the trajectory curve,
initially outside this domain, enters inside, it leaves
the slow manifold to reach the fast foliation.

The slow manifold equation provided by Propo-
sition 4.1 leads to the following implicit equation:

1
3ε2

[3x − 4x3 + x5 + (3 − 3x2)y − 3xε] = 0 (38)

Starting from this equation we can plot y
according to x:

y =
x5 − 4x3 + 3x(1 − ε)

3(−1 + x2)
(39)

Figure 3 shows the plot of the slow mani-
fold equation (39) of the Van der Pol system with
ε = 0.05 by using Proposition 4.1, i.e. the singular
approximation of the instantaneous acceleration
vector γ in magenta. Blue curve represents the slow
manifold equation (37) provided by Proposition 3.1.

In order to illustrate the principle of the method
presented above, we have plotted in Fig. 4 the iso-
clines of acceleration for various values: 0.5, 0.2, 0.1,
0.05.

The very large variation rate of the acceleration
in the vicinity of the slow manifold can be noticed
in Fig. 4. Some isoclines of the acceleration vector

-3 -2 -1 1 2 3
X

-3

-2

-1

1

2

3

Y

Fig. 3. Singular approximation of the acceleration of the B.
Van der Pol system (in magenta).
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-1

1
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3
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Fig. 4. Isoclines of the acceleration vector of the B. Van der
Pol system.

which tend to the slow manifold defined by Propo-
sition 3.1 are plotted.

5.2. Chua model

The Chua circuit [1986] is a relaxation oscillator
with a cubic nonlinear characteristic elaborated
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from a circuit comprising a harmonic oscillator for
which the operation is based on a field-effect tran-
sistor, coupled to a relaxation-oscillator composed
of a tunnel diode. The modeling of the circuit uses
a capacity which will prevent abrupt voltage drops
and makes it possible to describe the fast motion
of this oscillator by the following equations which
constitute a slow-fast system.

V =



dx

dt

dy

dt

dz

dt


=


1
ε

(
z − 44

3
x3 − 41

2
x2 − µx

)
−z

−0.7x + y + 0.24z


(40)

with ε and µ are real parameters

ε = 0.01
µ = 6.94

where the functions f , g and h are infinitely dif-
ferentiable with respect to all xi, and t, i.e. C∞
functions in a compact E are included in R

3 and

with values in R. Moreover, the presence of a small
multiplicative parameter ε in one of the compo-
nents of its instantaneous velocity vector V ensures
that the system (40) is a (S-FADS). We can thus
apply the method described in Sec. 3, i.e. Differen-
tial Geometry. In dimension three, the slow mani-
fold equation is provided by Proposition 3.2, i.e. the
vanishing condition of the torsion:

1
	 = − γ̇ · (γ ∧V)

‖γ ∧V‖2
= 0 ⇔ γ̇ · (γ ∧V) = 0

Within the framework of the tangent linear sys-
tem approximation, Corollary 1 leads to Eq. (34).
Using Mathematica� Fig. 5 shows a plot of
the phase portrait of Chua model and its slow
manifold.

Without the framework of the tangent lin-
ear system approximation, i.e. considering that
the functional jacobian varies with time, Propo-
sition 3.2 provides a surface equation which
represents the location of points where torsion is
cancelled, i.e. the location of points where the
osculating plane is stationary and where the slow

Fig. 5. Slow manifold of Chua model.
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Fig. 6. Attractive part of the slow manifold of Chua model.

Fig. 7. Singular approximation of the acceleration of Chua model.
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manifold is attractive. Thus, the attractive part
of the slow manifold of Chua model is plotted
in Fig. 6.

We deduce, according to Proposition 3.3, that
the location of the points where the torsion is
negative corresponds to the attractive parts of
the slow manifold. Thus, the attractive part of
the slow manifold of the Chua model is plotted
in Fig. 6.

Slow manifold equation provided by Proposi-
tion 4.1 leads to the following implicit equation:

1
6ε2

(5043x3 + 9020x4 + 3872x5 − 246xz

− 264x2z − 4.2xε + 6yε + 1.44zε

+ 369x2µ + 352x3µ − 6zµ + 6xµ2) = 0

The surface plotted in Fig. 7 constitutes a quite
good approximation of the slow manifold of this
model.

6. Lorenz Model

The purpose of the model established by Edward
Lorenz [1963] was in the beginning to analyze

the impredictible behavior of weather. After hav-
ing developed nonlinear partial derivative equations
starting from the thermal equation and Navier–
Stokes equations, Lorenz truncated them to retain
only three modes. The most widespread form of the
Lorenz model is as follows:

V =



dx

dt

dy

dt

dz

dt


=

 σ(y − x)
−xz + rx − y

xy − βz

 (41)

with σ, r and β are real parameters: σ = 10,
β = 8/3, r = 28, where the functions f , g and h are
infinitely differentiable with respect to all xi and t,
i.e. C∞ functions in a compact E are included in
R

3 and with values in R. Although this model has
no singular approximation, it can be considered as a
(S-FADS), according to Sec. 1.3, because it has been
numerically checked [Rossetto et al., 1998] that its
functional jacobian matrix possesses at least a large
and negative real eigenvalue in a large domain of
the phase space. Thus, we can apply the method

Fig. 8. Slow manifold of Lorenz model.
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Fig. 9. Attractive part of the slow manifold of Lorenz model.

described in Sec. 3, i.e. Differential Geometry. In
dimension three, the slow manifold equation is pro-
vided by Proposition 3.2, i.e. the vanishing condi-
tion of the torsion:

1
	 = − γ̇ · (γ ∧ V)

‖γ ∧V‖2
= 0 ⇔ γ̇ · (γ ∧V) = 0

Within the framework of the tangent linear system
approximation, Corollary 1 leads to Eq. (34). Using
Mathematica� Fig. 8 shows the plot of the phase
portrait of Lorenz model and its slow manifold.

Without the framework of the tangent lin-
ear system approximation, i.e. considering that
the functional jacobian varies with time, Proposi-
tion 3.2 provides a surface equation which repre-
sents the location of the points where torsion is
cancelled, i.e. the location of the points where the
osculating plane is stationary and where the slow
manifold is attractive. Thus, the attractive part
of the slow manifold of Lorenz model is plotted
in Fig. 9.

We deduce, according to Proposition 3.3, that
the location of the points where the torsion is
negative corresponds to the attractive parts of the

slow manifold. Thus the attractive part of the slow
manifold of the Lorenz model is plotted in Fig. 9.

7. Volterra–Gause Model

Let us consider the model elaborated by Ginoux
et al. [2005] for three species interacting in a
predator–prey mode.

V =



dx

dt

dy

dt

dz

dt


=


1
ξ
(x(1 − x) − x

1
2 y)

−δ1y + x
1
2 y − y

1
2 z

εz(y
1
2 − δ2)

 (42)

with ξ, ε, δ1 and δ2 are real parameters: ξ = 0.866,
ε = 1.428, δ1 = 0.577, δ2 = 0.376.

And where the functions f, g and h are infinitely
differentiable with respect to all xi, and t, i.e. C∞
functions in a compact E are included in R

3 and
with values in R.

This model consisting of a prey, a preda-
tor and top-predator has been named Volterra–
Gause because it combines the original model of
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Fig. 10. Deployment of the singular manifold of the Volterra–Gause model.

V. Volterra [1926] incorporating a logisitic limita-
tion of P. F. Verhulst [1838] type on the growth
of the prey and a limitation of G. F. Gause [1935]
type on the intensity of the predations of the preda-
tor on the prey and top-predator on the preda-
tor. The equations (42) are dimensionless, remarks
and details about the changes of variables and
the parameters have been extensively presented in
[Ginoux et al., 2005]. Moreover, the presence of
a small multiplicative parameter ξ in one of the
components of its instantaneous velocity vector V
ensures that the system (42) is a (S-FADS). So, the
method described in Sec. 3, i.e. Differential Geome-
try would have provided the slow manifold equa-
tion thanks to Proposition 3.2. But, this model
exhibits a chaotic attractor in the snail shell shape
and the use of the algorithm developed by Wolf
et al. [1985] have made it possible to compute
what can be regarded as its Lyapunov exponents:
(+0.035, 0.000,−0.628). Then, the Kaplan–Yorke
[1983] conjecture provided the following Lyapunov
dimension: 2.06. So, the fractal dimension of this
chaotic attractor is close to that of a surface. The
singular manifold makes it possible to account for

the evolution of the trajectory curves on the surface
generated by this attractor. Indeed, the location of
the points of intersection of the slow manifold with
a Poincaré section carried out in its vicinity con-
stitutes a “line” or more exactly a “curve”. Then
by using numerical integration this “curve” (resp.
“line”) is deployed through the phase space and its
deployment reconstitutes the attractor shape. The
result is plotted in Fig. 10.

8. Discussion

Considering the trajectory curves integral of
dynamical systems as plane or space curves evolv-
ing in the phase space, it has been demonstrated
in this work that the local metric properties of
curvature and torsion of these trajectory curves
make it possible to directly provide the analytical
equation of the slow manifold of dynamical systems
(S-FADS or CAS-FADS) according to kinematics
variables. The slow manifold analytical equation is
thus given by the following:

• vanishing condition of the curvature in dimension
two,
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• vanishing condition of the torsion in dimension
three.

Thus, the use of Differential Geometry concepts
has made it possible for the analytical equation of
the slow manifold to be completely independent of
the “slow” eigenvectors of the functional jacobian
of the tangent linear system, and it was demon-
strated that the equation thus obtained is com-
pletely identical to that providing the tangent
linear system approximation method [Rossetto
et al., 1998] presented below in the appendix. So
characterization of its attractivity is possible while
using a criterion proposed by Henri Poincaré [1881]
in his report entitled “Sur les courbes définies par
une equation différentielle”.

Moreover, the specific use of the instantaneous
acceleration vector, inherent in Mechanics, allows
on the one hand a kinematics interpretation of
the evolution of the trajectory curves in the vicin-
ity of the slow manifold by defining the slow and
fast domains of the phase space and on the other
hand, to approach the analytical equation of the
slow manifold thanks to the singular approxima-
tion of acceleration. The equation thus obtained
is completely identical to that which provides the
successive approximations method [Rossetto, 1986].
Thus, it has been established that the presence in
the phase space of an attractive slow manifold, in
the vicinity of which the trajectory curves converge,
defines part of the attractor. So, in order to propose
a qualitative description of the geometrical struc-
ture of attractor a new manifold called singular has
been introduced.

Various applications to the models of Van der
Pol, cubic-Chua, Lorenz and Volterra–Gause have
made it possible to illustrate the practical inter-
est of this new approach for the dynamical systems
(S-FADS or CAS-FADS) study.
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Delachet, A. [1964] La Géométrie Différentielle, “Que
sais-je”, n◦1104 (PUF, Paris).

Frenet, F. [1852] “Sur les courbes à double cour-
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Appendix

Formalization of the Tangent Linear
System Approximation Method

The aim of this appendix is to demonstrate that the
approach developed in this work generalizes the tan-
gent linear system approximation method [Rossetto
et al., 1998]. After having pointed out the neces-
sary assumptions to the application of this method
and the corollaries which result from this, two con-
ditions (of collinearity/coplanarity and orthogonal-
ity) providing the analytical equation of the slow
manifold of a dynamical system defined by (1) or
(2) will be presented in a formal way. Equivalence
between these two conditions will then be estab-
lished. Lastly, while using the sum and the prod-
uct (also the square of the sum and the prod-
uct) of the eigenvalues of the functional jacobian of
the tangent linear system, the equation of the slow
manifold generated by these two conditions will be
made independent of these eigenvalues and will be
expressed according to the elements of the func-
tional jacobian matrix of the tangent linear system.
It will be thus demonstrated that this analytical
equation of the slow manifold is completely iden-
tical to that provided by the Propositions 3.1 and
3.2 developed in this article.

Assumptions

The application of the tangent linear system
approximation method requires that the dynamical
system defined by (1) or (2) satisfies the following
assumptions:

(H1) The components fi, of the velocity vector
field �(X) defined in E are continuous, C∞
functions in E and with values included in R.

(H2) The dynamical system defined by (1) or
(2) satisfies the nonlinear part condition
[Rossetto et al., 1998], i.e. the influence of
the nonlinear part of the Taylor series of the

velocity vector field �(X) of this system is
overshadowed by the fast dynamics of the lin-
ear part.

�(X) = �(X0) + (X− X0)
d�(X)

dX

∣∣∣∣
X0

+ O((X− X0)2) (A.1)

Corollaries

To the dynamical system defined by (1) or (2)
is associated a tangent linear system defined as
follows:

dδX
dt

= J(X0)δX (A.2)

where

δX = X − X0, X0 = X(t0) and

d�(X)
dX

∣∣∣∣
X0

= J(X0)

Corollary 1. The nonlinear part condition implies
the stability of the slow manifold. So, according to
Proposition 3.3, the velocity varies slowly on the
slow manifold. This involves that the functional
jacobian J(X0) varies slowly with time, i.e.

dJ

dt
(X0) = 0 (A.3)

The solution of the tangent linear system (A.2)
is written as:

δX = eJ(X0)(t−t0)δX(t0) (A.4)

So,

δX =
n∑

i=1

aiYλi
(A.5)

where n is the dimension of the eigenspace, ai rep-
resents coefficients depending explicitly on the coor-
dinates of space and implicitly on time and Yλi

the
eigenvectors associated in the functional jacobian of
the tangent linear system.

Corollary 2. In the vicinity of the slow manifold
the velocities of the dynamical system defined by
(1) or (2) and that of the tangent linear system (4)
merge.

dδX
dt

= VT ≈ V (A.6)

where VT represents the velocity vector associated
in the tangent linear system.
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The tangent linear system approximation
method consists in spreading the velocity vector
field V on the eigenbasis associated to the eigenval-
ues of the functional jacobian of the tangent linear
system.

Indeed, by taking account of (A.2) and (A.5)
we have according to (A.6):

dδX
dt

= J(X0)δX

= J(X0)
n∑

i=1

aiYλi

=
n∑

i=1

aiJ(X0)Yλi

=
n∑

i=1

aiλiYλi
(A.7)

Thus, Corollary 2 provides:

dδX
dt

= VT ≈ V =
n∑

i=1

aiλiYλi
(A.8)

Equation (A.8) constitutes in dimension two
(resp. dimension three) a condition called collinear-
ity (resp. coplanarity) condition which provides
the analytical equation of the slow manifold of a
dynamical system defined by (1) or (2).

An alternative proposed by Rossetto et al.
[1998] uses the “fast” eigenvector on the left asso-
ciated to the “fast” eigenvalue of the transposed
functional jacobian of the tangent linear system.

In this case the velocity vector field V is then
orthogonal with the “fast” eigenvector on the left.
This constitutes a condition called orthogonality
condition which provides the analytical equation of
the slow manifold of a dynamical system defined by
(1) or (2).

These two conditions will be the subject of
a detailed presentation in the following sections.
Thereafter it will be supposed that the assumptions
(H1) and (H2) are always checked.

Collinearity/coplanarity condition

Slow manifold equation of a
two-dimensional dynamical system

Let us consider a dynamical system defined
under the same conditions as (1) or (2). The
eigenvectors associated to the eigenvalues of the

functional jacobian of the tangent linear system are
written as:

Yλi

λi − ∂g

∂y

∂g

∂x

 (A.9)

with
i = 1, 2

The projection of the velocity vector field V on
the eigenbasis is written according to Corollary 2:

dδX
dt

= VT ≈ V =
n∑

i=1

aiλiYλi

= αYλ1 + βYλ2

where α and β represent coefficients depending
explicitly on the coordinates of space and implicitly
on time and where Yλ1 represents the “fast” eigen-
vector and Yλ2 the “slow” eigenvector. The exis-
tence of an evanescent mode in the vicinity of the
slow manifold implies according to Tihonv’s theo-
rem [1952]: α � 1. We deduce:

Proposition A.1. A necessary and sufficient con-
dition of obtaining the slow manifold equation of a
two-dimensional dynamical system is that its veloc-
ity vector field V is collinear to the slow eigenvector
Yλ2 associated to the slow eigenvalue λ2 of the func-
tional jacobian of the tangent linear system. That is
to say:

V ≈ βYλ2 (A.10)

While using this collinearity condition, the
equation constituting the first-order approximation
in ε of the slow manifold of a two-dimensional
dynamical system is written as:

V ∧ Yλ2 = 0

⇔(
∂g

∂x

)(
dx

dt

)
−

(
λ2 − ∂g

∂y

)(
dy

dt

)
= 0 (A.11)

Slow manifold equation of a
three-dimensional dynamical system

Let us consider a dynamical system defined under
the same conditions as (1) or (2). The eigenvec-
tors associated to the eigenvalues of the func-
tional jacobian of the tangent linear system are
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written as:

Yλi



1
ε

∂f

∂y

∂g

∂z
+

1
ε

∂f

∂z

(
λi − ∂g

∂y

)
1
ε

∂f

∂z

∂g

∂x
+

∂g

∂z

(
λi − 1

ε

∂f

∂x

)
−1

ε

∂f

∂y

∂g

∂x
+

(
λi − 1

ε

∂f

∂x

)(
λi − ∂g

∂y

)


(A.12)

with

i = 1, 2, 3

The projection of the velocity vector field V on
the eigenbasis is written according to Corollary 2:

dδX
dt

= VT ≈ V =
n∑

i=1

aiλiYλi

= αYλ1 + βYλ2 + δYλ3

where α, β and δ represent coefficients depending
explicitly on the coordinates of space and implic-
itly on time and where Yλ1 represents the “fast”
eigenvector and Yλ2 , Yλ3 the “slow” eigenvectors.
The existence of an evanescent mode in the vicinity
of the slow manifold implies according to Tihonv’s
theorem [1952]: α � 1. We deduce:

Proposition A.2. A necessary and sufficient con-
dition of obtaining the slow manifold equation of
a three-dimensional dynamical system is that its
velocity vector field V is coplanar to the slow eigen-
vectors Yλ2 and Yλ3 associated to the slow eigen-
values λ2 and λ3 of the functional jacobian of the
tangent linear system. That is to say:

V ≈ βYλ2 + δYλ3 (A.13)

While using this coplanarity condition, the
equation constituting the first-order approximation
in ε of the slow manifold of a three-dimensional
dynamical system is written as:

det(V,Yλ2 ,Yλ3) = 0 ⇔ V · (Yλ2 ∧Yλ3) = 0
(A.14)

Orthogonality condition

Slow manifold equation of a
two-dimensional dynamical system

Let us consider a dynamical system defined under
the same conditions as (1) or (2). The eigenvec-
tors associated to the eigenvalues of the transposed
functional jacobian of the tangent linear system are

written as:

tYλi


λi − ∂g

∂y

1
ε

∂f

∂y

 (A.15)

with
i = 1, 2

tYλ1 represents the “fast” eigenvector on the
left associated to the dominant eigenvalue, i.e. the
largest eigenvalue in absolute value and tYλ2 is
the “slow” eigenvector on the left.

But since according to Rossetto et al. [1998],
the velocity vector field V is perpendicular to the
“fast” eigenvector on the left tYλ1 , we deduce:

Proposition A.3. A necessary and sufficient con-
dition of obtaining the slow manifold equation of
a two-dimensional dynamical system is that its
velocity vector field V is perpendicular to the fast
eigenvector tYλ1 on the left associated to the fast
eigenvalue λ1 of the transposed functional jacobian
of the tangent linear system. That is to say:

V⊥tYλ1 (A.16)

While using this orthogonality condition, the
equation constituting the first-order approximation
in ε of the slow manifold of a two-dimensional
dynamical system is written as:

V · tYλ1 = 0

⇔(
λ1 − ∂g

∂y

)(
dx

dt

)
+

(
1
ε

∂f

∂y

)(
dy

dt

)
= 0 (A.17)

Slow manifold equation of a
three-dimensional dynamical system

Let us consider a dynamical system defined under
the same conditions as (1) or (2). The eigenvec-
tors associated to the eigenvalues of the transposed
functional jacobian of the tangent linear system are
written as:

tYλi



∂g

∂x

∂h

∂y
+

∂h

∂x

(
λi − ∂g

∂y

)
1
ε

∂f

∂y

∂h

∂x
+

∂h

∂y

(
λi − 1

ε

∂f

∂x

)
−1

ε

∂f

∂y

∂g

∂x
+

(
λi − 1

ε

∂f

∂x

)(
λi − ∂g

∂y

)


(A.18)
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with

i = 1, 2, 3
tYλ1 represents the “fast” eigenvector on the

left associated to the dominant eigenvalue, i.e. the
largest eigenvalue in absolute value and tYλ2 ,

tYλ3

are the “slow” eigenvectors on the left.
But since according to Rossetto et al. [1998],

the velocity vector field V is perpendicular to the
“fast” eigenvector on the left tYλ1 , we deduce:

Proposition A.4. A necessary and sufficient con-
dition of obtaining the slow manifold equation of
a three-dimensional dynamical system is that its
velocity vector field V is perpendicular to the fast
eigenvector tYλ1 on the left associated in the fast
eigenvalue λ1 of the transposed functional jacobian
of the tangent linear system. That is to say:

V⊥tYλ1 (A.19)

While using this orthogonality condition, the
equation constituting the first-order approximation
in ε of the slow manifold of a three-dimensional
dynamical system is written as:

V⊥tYλ1 ⇔ V · tYλ1 = 0 (A.20)

Equivalence of both conditions

Proposition A.5. Both necessary and sufficient
collinearity/coplanarity and orthogonality condi-
tions providing the slow manifold equation are
equivalent.

Proof of Proposition 5 in Dimension Two. In dimen-
sion two, the slow manifold equation may be
obtained while considering that the velocity vector
field V is:

• either collinear to the “slow” eigenvector Yλ2

• either perpendicular to the “fast” eigenvector on
the left tYλ1

There is equivalence between both conditions
provided that the “fast” eigenvector on the left
tYλ1 is orthogonal to the “slow” eigenvector Yλ2 .
Both co-ordinates of these eigenvectors defined in
the above section make it possible to express their
scalar product:

tYλ1 · Yλ2 = λ1λ2 − ∂g

∂y
(λ1 + λ2)

+
(

∂g

∂y

)2

+
(

1
ε

∂f

∂y

)(
∂g

∂x

)

While using the trace and determinant of the
functional jacobian of the tangent linear system, we
have:

tYλ1 · Yλ2 =
1
ε

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
−

(
∂g

∂y

)(
1
ε

∂f

∂x
+

∂g

∂y

)
+

(
∂g

∂y

)2

+
(

1
ε

∂f

∂y

)(
∂g

∂x

)
= 0

So,
tYλ1⊥Yλ2 (A.21)

Thus, collinearity and orthogonality conditions
are completely equivalent. �
Proof of Proposition 5 in Dimension Three. In dimen-
sion three, the slow manifold equation may
be obtained while considering that the velocity
vector field V is:

• either coplanar to the “slow” eigenvectors Yλ2

and Yλ3

• either perpendicular to the “fast” eigenvector on
the left tYλ1

There is equivalence between both conditions
provided that the “fast” eigenvector on the left tYλ1

is orthogonal to the plane containing the “slow”
eigenvectors Yλ2 and Yλ3 . While using the coor-
dinates of these eigenvectors defined in the above
section, the sum and the product (also the square
of the sum and the product) of the eigenvalues of
the functional jacobian of the tangent linear system,
the following equality is demonstrated:

Yλ2 ∧ Yλ3 = tYλ1 (A.22)

Thus, coplanarity and orthogonality conditions
are completely equivalent. �
Note: In dimension three, numerical studies
shown significant differences in the plot of slow
manifold according to whether one or the other
of both conditions (coplanarity (A.14) or orthog-
onality (A.20)) were used. These differences come
from the fact that each of these two conditions
uses one or two eigenvectors whose coordinates are
expressed according to the eigenvalues of the func-
tional jacobian of the tangent linear system. Since
these eigenvalues can be complex or real according
to their localization in the phase space the plot of
the analytical equation of the slow manifold can be
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difficult even impossible. Also to solve this prob-
lem it is necessary to make the analytical equation
of the slow manifold independent of the eigenval-
ues. This can be carried out by multiplying each
equation of the slow manifold by one or two “con-
jugated” equations. The equation obtained will be
presented in each case (dimension two and three) in
the next section.

Slow manifold equation independent of the
eigenvectors

Proposition A.6. Slow manifold equations of a
dynamical system obtained by the collinearity/
coplanarity and orthogonality conditions are
equivalent.

Proof of Proposition 6 in Dimension Two. In order to
demonstrate the equivalence between the slow man-
ifold equations obtained by each condition, they
should be expressed independently of the eigenval-
ues. So let us multiply each equation (A.11) then
(A.17) by its “conjugated” equation, i.e. an equa-
tion in which the eigenvalue λ1 (resp. λ2) is replaced
by the eigenvalue λ2 (resp. λ1). Let us take note
that the “conjugated” equation (A.11) corresponds
to the collinearity condition between the velocity
vector field V and the eigenvector Yλ1 . The prod-
uct of Eq. (A.11) by its “conjugated” equation is
written as:

(V ∧Yλ1) · (V ∧ Yλ2) = 0

So, while using the trace and the determinant of
the functional jacobian of the tangent linear system
we have:(

∂g

∂x

)[(
∂g

∂x

)(
dx

dt

)2

−
(

1
ε

∂f

∂x
− ∂g

∂y

)(
dx

dt

)

×
(

dy

dt

)
−

(
1
ε

∂f

∂y

)(
dy

dt

)2
]

= 0 (A.23)

In the same manner, the product of Eq. (A.17)
by its “conjugated” equation which corresponds to
the orthogonality condition between velocity vector
field V and the eigenvector tYλ2 is written as:

(V · tYλ1)(V · tYλ2) = 0

So, while using the trace and the determinant of
the functional jacobian of the tangent linear system
we have:(

1
ε

∂f

∂y

)[(
∂g

∂x

)(
dx

dt

)2

−
(

1
ε

∂f

∂x
− ∂g

∂y

)(
dx

dt

)

×
(

dy

dt

)
−

(
1
ε

∂f

∂y

)(
dy

dt

)2
]

= 0 (A.24)

Both Eqs. (A.23) and (A.24) are equal provided
that: (

∂g

∂x

)
�= 0 and

(
1
ε

∂f

∂y

)
�= 0

These two last conditions are, according to the
definition of a dynamical system, satisfied because if
they were not both differential equations that make
the system completely uncoupled, it would not be
a system anymore. Thus, the equations obtained
by the collinearity and orthogonality conditions are
equivalent.

(V ∧Yλ1) · (V ∧ Yλ2) = 0
⇔

(V · tYλ1)(V · tYλ2) = 0 (A.25)

�

Equations (A.23) and (A.24) provide the slow
manifold equation of a two dimensional dynamical
system independently of the eigenvalues of the func-
tional jacobian of the tangent linear system. In order
to express them, we adopt the following notations
for:

• the velocity vector field

V
(

ẋ

ẏ

)
• the functional jacobian

J =
(

a b

c d

)
• the eigenvectors coordinates (A.9)

Yλi

(
λi − d

c

)
with

i = 1, 2

Equations (A.23) and (A.24) providing the slow
manifold equation of a two-dimensional dynamical
system independently of the eigenvalues of the func-
tional jacobian of the tangent linear system are then
written as:

cẋ2 − (a − d) ẋẏ − bẏ2 = 0 (A.26)

φ =
2∑

i,j=0

αijẋ
iẏj = 0 with



Differential Geometry and Mechanics: Applications to Chaotic Dynamical Systems 909

αij =
{

= 0 si i + j �= 2
�= 0 si i + j = 2

(A.27)

�

Proof of Proposition 6 in Dimension Three. In order
to demonstrate the equivalence between the slow
manifold equations obtained by each condition,
the same step as that exposed in the above sec-
tion is applied. The slow manifold equation should
be expressed independently of the eigenvalues. In
dimension three, each equation (A.14) then (A.20)
must be multiplied by two “conjugated” equations
obtained by circular shifts of the eigenvalues. Let us
take note that the first of the “conjugated” equa-
tions (A.14) corresponds to the coplanarity condi-
tion between the velocity vector field V and the
eigenvectors Yλ1 and Yλ2 , the second corresponds
to the coplanarity condition between the velocity
vector field V and the eigenvectors Yλ1 and Yλ3 .
The product of Eq. (A.14) by its “conjugated”
equation is written as:

[V · (Yλ1 ∧ Yλ2)] · [V · (Yλ2 ∧ Yλ3)]
· [V · (Yλ1 ∧ Yλ3)] = 0 (A.28)

In the same manner, the product of Eq. (A.20)
by its “conjugated” equation which corresponds to
the orthogonality condition between the velocity
vector field V and the eigenvector tYλ2 and, the
orthogonality condition between the velocity vector
field V and the eigenvector tYλ3 is written as:

(V · tYλ1)(V · tYλ2)(V · tYλ3) = 0 (A.29)

By using Eq. (A.22) and all the circular
shifts which result from this we demonstrate that
Eqs. (A.28) and (A.29) are equal. Thus, the equa-
tions obtained by the coplanarity and orthogonality
conditions are equivalent.

[V · (Yλ1 ∧Yλ2)] · [V · (Yλ2 ∧Yλ3)]
· [V · (Yλ1 ∧ Yλ3)] = 0

⇔ (A.30)
(V · tYλ1)(V · tYλ2)(V · tYλ3) = 0

�

Equations (A.28) and (A.29) provide the slow
manifold equation of a three-dimensional dynami-
cal system independently of the eigenvalues of the
functional jacobian of the tangent linear system. In
order to express them, we adopt the following nota-
tions for:

• the velocity vector field

V

 ẋ

ẏ

ż


• the functional jacobian

J =

a b c

d e f

g h i


• the “slow” eigenvectors coordinates (A.12)

Yλi

 bf + c(λi − e)
cd + f(λi − a)

−bd + (λi − a)(λi − e)


with

i = 2, 3

• the “fast” eigenvectors coordinates on the left
(A.18)

tYλ1

 hd + g(λ1 − e)
bg + h(λ1 − a)

−bd + (λ1 − a)(λ1 − e)


Starting from the coplanarity condition (A.14)

and while replacing the eigenvectors by their coordi-
nates (A.12) and while removing all the eigenvalues
λ2 and λ3 thanks to the sum and the products (and
also the square of the sum and the products) of the
eigenvalues of the functional jacobian of the tangent
linear system, we obtain the following equation:

A1ẋ − B1ẏ + Cż = 0 (A.31)

with

A1 = fλ2
1 − (ef + if + cd)λ1 + efi

+ cdi − cfg − f2h

B1 = cλ2
1 − (ac + ic + bf)λ1 + aci

+ bfi− c2g − cfh

C = bf2 − c2d + cf(a − e)

(A.32)

Equation (A.31) is absolutely identical to
that one would obtain by the orthogonality con-
dition (A.20). Let us multiply Eq. (A.31) by
its “conjugated” equations in λ2 and λ3, i.e.
by (A2ẋ − B2ẏ + Cż) and (A3ẋ − B3ẏ + Cż). The
coefficients Ai, Bi are obtained by replacing in
Eq. (A.32) the eigenvalue λ1 by eigenvalue λ2
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Table 2. Slow manifold analytical equation of a two-
dimensional dynamical system.

φ =
2P

i,j=0
αij ẋ

iẏj = 0 with αij =

(
= 0 si i + j �= 2

�= 0 si i + j = 2

α20 = c

α11 = −(a − d)

α02 = −b

Table 3. Slow manifold analytical equation of a three-dimensional dynamical system.

φ =
3P

i,j,k=0
αijk ẋiẏj żk = 0 with αijk =

(
= 0 si i + j + k �= 3

�= 0 si i + j + k = 3

α300 = d2h + dgi − fg2 − dge

α030 = ch2 + abh − b2g − ibh

α003 = c2d + cfe − bf2 − cfa

α210 = bdg + aeg − e2g + cg2 − 2adh − 2fgh + deh − agi + egi + dhi

α120 = −abg + 2beg + a2h − fh2 − bdh − aeh + 2cgh − bgi − ahi + ehi

α201 = −bd2 + ade − cdg + 2afg + 2dfh − efg − adi − dei − fgi + di2

α102 = acd + cde − a2f − 2bdf + aef + cfg + f2h − 2cdi + afi − efi

α021 = b2d − abe − 2bcg − 2ceh + ach + bfh + abi + bei + chi − bi2

α012 = 2bcd − ace + ce2 − abf − bef − c2g − cfh + aci − cei + 2bfi

α111 = abd − a2e − bde + ae2 − acg + 3bfg − 3cdh + efh + a2i − e2i + cgi − fhi − ai2 + ei2

then by eigenvalue λ3 respectively for i = 2, 3.
We obtain:

(A1ẋ − B1ẏ + Cż)(A2ẋ − B2ẏ + Cż)
× (A3ẋ − B3ẏ + Cż) = 0 (A.33)

So,

φ =
3∑

i,j,k=0

αijkẋ
iẏj żk = 0 with

αijk =
{

= 0 si i + j + k �= 3
�= 0 si i + j + k = 3

(A.34)

By developing this expression we obtain a poly-
nomial comprising terms of the sum and product of

eigenvalues and also of the square of sum and prod-
uct of eigenvalues and which are directly connected
to the elements of the functional jacobian matrix of
the tangent linear system. The equation obtained is
the result of a demonstration (available by request
to the authors) which establishes a relation between
the coefficients of this polynomial and the elements
of the functional jacobian matrix of the tangent lin-
ear system.

The expression (A.34) represents the slow man-
ifold equation of a three-dimensional dynamical
system independently of the eigenvalues of the func-
tional jacobian of the tangent linear system. Both
expressions (A.27) and (A.34) are also available at
the address: http://ginoux.univ-tln.fr.


