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Abstract  

This paper aims to analyze trajectories behavior and attractor structure of chaotic 
dynamical systems with the Differential Geometry and Mechanics formalism. Applied to 
slow-fast autonomous dynamical systems (S-FADS), this approach provides: on the one 
hand a kinematics interpretation of the trajectories motion, and on the other hand, a direct 
determination of the slow manifold equation. The attractivity of this manifold established 
with a new criterion makes it possible to ensure attractors stability. Then, a qualitative 
description of the geometrical structure of the attractor is presented. It consists in 
considering it as the deployment in the space phase of a special submanifold that is called 
singular manifold. The attractor can be obtained by integration of initial conditions taken on 
this singular manifold. Applications of this method are made for the following models: 
cubic-Chua, and Volterra-Gause.  

Introduction 

In the Mechanics formalism the solution of a dynamical system is considered as the co-
ordinates of a moving point M at the instant t. Then, three kinematics variables are attached 
to this point which represents the “trajectory curve”:  

 
X(t) : parametric representation of chaotic orbit, 

V(t) : instantaneous velocity vector, 

γ(t) : instantaneous acceleration vector. 
 

The Differential Geometry allows to use the Frénet frame [2] which is moving with the 
“trajectory curve” and directed towards its motion, consists in, a unit tangent vector to the 
“trajectory curve”, a unit normal vector, directed towards the interior of the concavity of the 

curve and a unit binormal vector to the trajectory curve so that the trihedron ( ), ,τ β ν  is 

direct (Cf. Fig.1.).  
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Fig. 1. Frénet frame and osculating plane.  

In this moving frame the instantaneous acceleration vector may be decomposed in a 
tangential and normal component both depending on instantaneous velocity and 
acceleration vectors directions. 
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The osculating plane [7] to the “trajectory curve” presented in Fig. 1. is the plane 

passing through a fixed point I and spanned by the instantaneous velocity and acceleration 
vectors. Its equation may be provided by the coplanarity condition (2). 

 
( ) 2 M  (P)   μ, η /  IM = μV + ηγ∀ ∈ ⇔ ∃ ∈  

 
This coplanarity condition may be written:  
 

( )IM . V γ 0     (2)∧ =  

 
In this formalism, trajectory presents two “metric properties”: 
 

- curvature which expresses the rate of change of the tangent when moving along 
the “trajectory curve”.ℜ  represents the radius of curvature. 

- torsion which measures, roughly speaking, the magnitude and sense of deviation 
of the “trajectory curve” from the osculating plane, or, in other words, the rate of 
change of the osculating plane. ℑ  represents the radius of torsion. 
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Then, the use of the instantaneous acceleration vector makes it possible to delimit the 

slow and fast domains of the phase space, 

Definition 

The domain of the phase space in which the tangential component of the instantaneous 
acceleration vector is negative, i.e., the domain in which the system is decelerating is called 
slow domain. The domain of the phase space in which the tangential component of the 
instantaneous acceleration vector is positive, i.e., the domain in which the system is 
accelerating is called fast domain. 

New Method of Determination of the Slow Manifold 
Equation 

Applying both formalisms, recalled in the previous section, to slow-fast autonomous 
dynamical systems (S-FADS) or to autonomous dynamical systems which can be 
considered as slow-fast (CAS-FADS), i.e., systems whose functional jacobian matrix has a 
“fast eigenvalue” which is a real, negative and dominant on a large domain of the phase 
space [6], a new method of determination of the slow manifold equation is proposed: 

Proposition 1 

The equation of the osculating plane (P) passing through a fixed point I of a dynamical 
system (S-FADS or CAS-SFADS) and spanned by the instantaneous, velocity vector V  
and acceleration vector γ , is the slow manifold equation associated to this system. 
 

In order to specify the attractivity of this manifold a new criterion based on the envelope 
theory is also proposed [4]:  

Proposition 2 

The attractivity of the slow manifold is given by the sign of the torsion which constitutes 
the envelope of the slow manifold defined by the osculating plane. 
 

It can be shown [4] that the total differential with respect to time of the osculating plane 
equation defined by the coplanarity condition (2) corresponds to the torsion. Thus, the 
location of the points where the torsion vanishes corresponds to the location of the points 
where the osculating plane is stationary. 
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Then, a qualitative description of the attractor structure is presented with the 

introduction of a submanifold called singular manifold:  

Proposition 3 

The singular manifold is defined like the location of the points belonging to the slow 
manifold and for which the tangential component of the instantaneous acceleration vector 
vanishes. This leads to the following equations: 

 
0

    (4)
0τ

φ
γ
=⎧

⎨ =⎩
 

 
This one-dimensional manifold is a submanifold of the slow manifold. 
Let us consider the location of the points obtained by integration in a given time of 

initial conditions taken on this manifold. Each point being the iterated to the antecedent 
point. They constitute a submanifold which also belongs to the attractor. The whole of these 
manifolds corresponds to different points of integration making it possible to reconstitute 
the attractor by redeployment of the singular manifold. 

Applications and Numerical Simulations 

Applications of this new method are made for the following models: cubic-Chua and 
Volterra-Gause. 

Cubic-Chua’s circuit 

Let’s first recall the cubic Chua’s circuit [1] which is a (S-FADS). Parameters used are: 
 

0.05,  2ε μ= =  
 

3 21 44 41
3 2

    (5)
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In the Fig.2. is plotted the slow manifold equation associated to the cubic-Chua’s circuit. 
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Fig. 2. Slow manifold equation associated to the cubic-Chua’s circuit defined by the 
osculating plane method 

 In the Fig.3. is plotted the location of the point where the torsion associated to the 
cubic-Chua’s circuit vanishes. 
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Fig. 3. Location of the point where the torsion associated to the cubic-Chua’s circuit 
vanishes, i.e., where the osculating plane is stationary. 

Volterra-Gause model 

In order to illustrate the concept of deployment let’s apply it on a three-dimensional 
predator-prey model elaborated by Ginoux et al. [3].This model consisted of a prey, a 
predator and top-predator has been named Volterra-Gause because it combines the original 
model of V. Volterra (1926) incorporating a logisitic limitation of P.F. Verhulst (1838) type 
on the growth of the prey and a limitation of G.F. Gause (1935) type on the intensity of the 
predation of the predator on the prey and of  top-predator on the predator. 
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Parameters used are: 
 

1 20.866,  1.428,  0.577,  0.376ξ ε δ δ= = = =  
 
This model exhibits a chaotic attractor in the snail shell shape presented in Fig. 4. The 

use of the algorithm developed by Wolf et al. [8] made it possible to compute what can be 
regarded as its Lyapunov exponents: (+0.035, 0.000, -0.628). 

Then, the Kaplan-Yorke [5] conjecture provided the following Lyapunov dimension: 
2.06. So, the fractal dimension of this chaotic attractor is close to that of a surface and it is 
thus possible to consider a deployment of a singular manifold. Taking some points on the 
slow manifold for which the tangential component of the instantaneous acceleration vector 
vanishes, and joining these points, a “line” or more generally, a “curve” is formed. Then, 
using numerical integration, this “curve” (resp. “line”) is deployed through the phase space 
and its deployment reconstitutes to the attractor shape. The result is plotted in Fig. 4. 
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Fig. 4.  Deployment of the singular manifolds ( )1 2,S S  joining the singular points J and K 
of the system (6) 
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Conclusions and Discussions 

The use of Mechanics and Differential Geometry formalism provided on one hand, a 
kinematics interpretation of the nature of the motion of chaotic trajectories, and on the other 
hand, a direct determination of the slow manifold equation associated to (S-FADS) or to 
(CAS-FADS). It is obvious that on the slow manifold, provided by the osculating plane 
method, the “trajectory curve” is decelerating.  

Moreover, the introduction of the singular manifold which can reconstitute the attractor 
by successive integrations of points taken on this submanifold, i.e., by redeployment, 
provides a qualitative description of its structure. 

The Mechanics formalism and more precisely the radius of curvature and the torsion 
could be useful to go further in the geometrical description and thus in the understanding of 
the attractor structure.  
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