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The aim of this work is to present applets elaborated with Mathematica in order to study two 
or three-dimensional autonomous dynamical systems depending on parameters. As the parame-
ters vary, the phase portrait of such systems also varies. So, the appearance of a topologically 
nonequivalent phase portrait under the variation of parameters is called a bifurcation. More 
precisely, the Hopf-bifurcation plays a very important role in the study of dynamical systems. 
Hence, the first applet allows to compute the Hopf bifurcation parameter value of two or 
three-dimensional autonomous dynamical systems with a high accuracy. As pointed out by 
Glass and Mackey, the construction of a bifurcation diagram is a good means of locating the 
signature of chaos in a dynamical system. The second applet makes it possible to construct the 
bifurcation diagram of such systems. Thus, chaotic behaviours such as period doubling 
cascade may be highlighted. Various examples of applications are proposed to illustrate the 
usefulness of these applets. 



Introduction 
Characterizing the evolution of a given physical phenomenon such as population dynamics, for  example, may be
done thanks  to  a  mathematical model which may consist  of  system of  differential  equations  involving  state  vari-
ables  and  parameters.  If  the  variables  of  such  system do  not  depend  explicitly  on  time,  the  system is  said  to  be
autonomous. Under certain assumptions defined below such system may be considered as autonomous dynamical
system.  As  time  does  not  occur  explicitly  in  equations,  solution  of  a  system  of  differential  equations  may  be
projected in a space called phase-space  in which the behaviour of the state variables is described. The plot of the
solution in such space is called phase portrait. The bifurcation of a system of differential equation, i.e., of autono-
mous dynamical system is concerned with changes in the qualitative behaviour of its phase portrait as parameters
vary and  more precisely,  when  such  a  bifurcation  parameter  reaches  a  certain  value,  called  critical  value.  Thus,
bifurcation theory is of great importance in dynamical systems study because it indicates stability changes, struc-
tural changes in a system etc... So, plotting the solution of autonomous dynamical system according to the bifurca-
tion  parameter  leads  to  the  construction  of  a  bifurcation  diagram.  Such  diagram  provides  knowledge  on  the
behaviour of the solution: constant, periodic, nonperiodic or even chaotic as pointed out by Glass and Mackey. As
there is many kinds of behaviour of solutions there is many kinds of bifurcations. In this work, we focus on Hopf
bifurcation  corresponding to periodic solutions and period doubling bifurcation or period doubling cascade which
is one of the route to chaos for dynamical systems.  

In the following we consider a system of differential equations defined in a compact U included in n:

(1)d X
|

ccccccccc
dt

=
|

 IX
|

, μM
with

X
|

= @x1, x2, ..., xnDt ε U ⊂ n, μ ε V ⊂ p

and
|

 IX
|

, μM = Af1 IX
|

, μM, f2 IX
|

, μM, ..., fn IX
|

, μME
t
 ε U ⊂ n

The vector 
|

 defines a velocity vector field in U whose components fi  which are supposed to be continuous and
infinitely derivable with respect to all xi  and t, i.e., are C¶  functions in U and with values included in , check the
assumptions of the Cauchy-Lipschitz theorem. For more details, see for example Coddington & Levinson, [1955].
A solution of  this  system is an integral  curve X

|
(t)  tangent to 

|
 whose values define the states  of  the dynamical

system described by the Eq. (1). Since none of the components fi  of the velocity vector field depends here explic-
itly on time, the system is said to be autonomous.

Hopf bifurcation
Let's  consider  a  dynamical  system  defined  under  the  same  conditions  as  above  and  having  a  fixed  point
X
|

= X
| ∗

 HμLand let's make the following assumptions. 

The  jacobian  functional  matrix  associated  with  this  system  has  a  pair  of  complex-conjugate  eigenvalues
σ1,2 = α HμL + Ç ω HμL such that:

- for a critical value of the bifurcation parameter μ = μC, α HμCL = 0 and H dαccccccdμ Lμ = μC
≠ 0
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- the n - 2 others eigenvalues evaluated in μ have their real parts strictly negative. 

If these assumptions are checked, then JX
| ∗

 HμCL, μCNis a Hopf bifurcation point which leads to the appearance,

from the equilibrium state X
| ∗

 HμCL, of a limit cycle. 

Computation of the Hopf bifurcation parameter value
Using the following procedure it is possible to compute the Hopf bifurcation parameter value of two or three-dimen-
sional  dynamical  systems.  Since  the  two-dimensional  procedure  may  be  obtained  by  a  simple  reduction,  the
three-dimensional procedure is only presented.

à Dynamical system

In dimension three the autonomous dynamical system (1) may be defined under the same conditions as:

(2)d X
|

ccccccccc
dt

=
|

 HX
|L

with

X
|

= @x, y, zDt ε U ⊂ 3, Hλ, μ, ρL ε V ⊂ 3

and
|

 HX
|L = Af IX

|
, λM, g IX

|
, μM, h IX

|
, ρME

t
 ε U ⊂ 3

where l, m and r are real parameters.

d X
|

cccccccccc
dt
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jjjjjjjjjjjj

d xcccccc
dt
d ycccccc
dt
d zcccccc
dt

y

{

zzzzzzzzzzzz
=

|
 
i

k

jjjjjjjjj

f Hx, y, z, λL
g Hx, y, z, μL
h Hx, y, z, ρL

y

{

zzzzzzzzz

à Bifurcation parameter

Choose a bifurcation parameter between the set of parameters of the dynamical system (2). l for example.

à Fixed points

Choosing l  as  the  Hopf  bifurcation  parameter  and  while  "freezing"  all  the  others,  i.e.,  m  and  r,  each fixed point
may be expressed according to the parameter l. 

Solve@8f Hx, y, z, λL == 0,
g Hx, y, z, μL == 0, h Hx, y, z, ρL == 0<, 8x, y, z<D

Choose  the  fixed  point  in  the  vicinity  of  which  the  Hopf  bifurcation  may  occurs.  Let's  call  I  this  fixed  point
expressed according to the parameter l.
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à Functional jacobian matrix

Since the functions fi are supposed to be C¶ functions in a compact U included in n, it is possible to compute the

functional  jacobian matrix  of  system (1)  or  (2),  defined  by:  = d 
ö

ÅÅÅÅÅÅÅÅÅÅÅ
d X

ö .  The following procedure  provides  each

elements of the functional jacobian matrix.

a11 = Simplify@D@f, xDD

a12 = Simplify@D@f, yDD

a13 = Simplify@D@f, zDD

a21 = Simplify@D@g, xDD

a22 = Simplify@D@g, yDD

a23 = Simplify@D@g, zDD

a31 = Simplify@D@h, xDD

a32 = Simplify@D@h, yDD

a33 = Simplify@D@h, zDD

J = 88a11, a12, a13<, 8a21, a22, a23<, 8a31, a32, a33<<

MatrixForm@JD

Plugging expression of the fixed point I  in the functional jacobian matrix and while using the Mathematica func-
tion Eigenvalues,  it  is  possible to  compute the eigenvalues  according to the chosen parameter  l.  Let's  denote  Sp
(for spectrum) these eigenvalues.

Sp := Eigenvalues@JD;
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à Graphical estimation of the Hopf bifurcation parameter value

In  order  to  find  the  range  of  this  parameter,  the  real  part  of  one  of  the  complex-conjugate  eigenvalue  is  plotted
(with  Plot  function)  according  to  the  parameter  chosen  (l).  Then,  the  location  of  the  points  where  this  function
vanishes provides an estimation of the Hopf bifurcation parameter value.

Plot@Re@Sp@@2DDD, 8λ, xmin, xmax<, PlotRange → 8ymin, ymax<D

It provides the approximate value: lestimate 

To  confirm  this,  the  other  real  part  of  the  other  complex-conjugate  eigenvalue  is  also  plotted  according  to  the
parameter chosen (l). 

Plot@Re@Sp@@3DDD, 8λ, xmin, xmax<, PlotRange → 8ymin, ymax<D

à Numerical computation of the Hopf bifurcation parameter value

Then, the Mathematica function: FindRoot, which uses a damped Newton's method, the secant method and Brent's
method, provides a numerical computation of the Hopf bifurcation parameter value with a high accuracy depend-
ing on the choice of the operator and on the WorkingPrecision.

FindRoot@Re@Sp@@2DDD m 0, 8λ, λ estimate<D

This  provides  the  Hopf  bifurcation  parameter  value  starting  from  the  vicinity  of  its  graphical  estimation:
λ estimate

Then, it can be confirmed also for the other real part of the other complex conjugate eigenvalue. 

FindRoot@Re@Sp@@3DDD m 0, 8λ, λ estimate<D

Example: Hopf bifurcation in the Lorenz attractor
The purpose of the model established by Edward Lorenz [1963] was in the beginning to analyze the impredictible
behaviour  of  weather.  After  having  developed  non-linear  partial  derivative  equations  starting  from  the  thermal
equation  and  Navier-Stokes  equations,  Lorenz  truncated  them to  retain  only  three  modes.  The  most  widespread
form of the Lorenz model is as follows:

V
◊
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k

jjjjjjjjjjjj

d xcccccc
dt
d ycccccc
dt
d zcccccc
dt

y

{

zzzzzzzzzzzz
=

|
 
i

k

jjjjjjjj

f Hx, y, z, σL
g Hx, y, z, rL
h Hx, y, z, βL

y

{

zzzzzzzz
=
i

k

jjjjjjjj

σ Hy − xL
−x z + r x − y

x y − β z

y

{

zzzzzzzz

with s, r, and b are real parameters:  s = 10, β = 8cccc3 , r = 28

where the functions f, g and h are infinitely derivable with respect to all xi, and t, i.e., are C¶functions in a compact
U  included  in  3  and  with  values  in  .  Lorenz  model  has  been  extensively  studied  and  the  Hopf  bifurcation
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parameter  value  r  in  the  vicinity  of  the  fixed  points  labelled  C± I±è!!!!!!!!!!!!!!!!!!!!β Hr − 1L , ±è!!!!!!!!!!!!!!!!!!!!β Hr − 1L , r − 1Mis
well-known: 

r = rC = σ 
σ + β + 3
cccccccccccccccccccc
σ − β − 1

> 24.7368

So, let's apply the above procedure.

Solve@8σ Hy − xL == 0, −x z + r x − y == 0, x y − β z == 0<, 8x, y, z<D

98y → 0, z → 0, x → 0<, 9y → −è!!!!!!!!!!!!!!!!!−β + r β , z → −1 + r, x → −è!!!!!!!!!!!!!!!!!−β + r β =,

9y → è!!!!!!!!!!!!!!!!!−β + r β , z → −1 + r, x → è!!!!!!!!!!!!!!!!!−β + r β ==
Fixing parameters s and b, one seeks the Hopf bifurcation parameter value r in the vicinity of any fixed point C±.
Let's choose arbitrary C− and compute the functional jacobian matrix. 

J =
i

k

jjjjjjj
−10 10 0
r − z −1 −x

y x −8ê3

y

{

zzzzzzz

Evaluated at C− the functional jacobian matrix takes the form:

J =

i

k

jjjjjjjjjjjjjj

−10 10 0

1 −1 2 "#####2cccc
3

è!!!!!!!!!!!!!
−1 + r

−2 "#####2cccc
3

è!!!!!!!!!!!!!
−1 + r −2 "#####2cccc

3

è!!!!!!!!!!!!!
−1 + r − 8cccc

3

y

{

zzzzzzzzzzzzzz

Then, it is possible to compute its eigenvalues according to the chosen parameter r.

Sp := Eigenvalues@JD;

Now, let's plot the real part of one of the complex-conjugate eigenvalues according to r.
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Plot@Re@Sp@@2DDD, 8r, 0, 30<, PlotRange → 8−3, 3<,
AxesLabel → 8"r", "Re@λ2D"<, PlotStyle → 8RGBColor@1, 0, 0D<D

5 10 15 20 25 30
r

-3

-2

-1

1

2

3
Re@λ2D

The other provides the following plot.

Plot@Re@Sp@@3DDD, 8r, 0, 30<, PlotRange → 8−3, 3<,
AxesLabel → 8"r", "Re@λ3D"<, PlotStyle → 8RGBColor@1, 0, 0D<D

5 10 15 20 25 30
r

-3

-2

-1

1

2

3
Re@λ3D

Then,  the  location of  the points  where  these functions (Re[l1,2]=f(r))  vanish  provides  an estimation of  the Hopf
bifurcation parameter value,  i.e.,  r  >  24.  Using FindRoot function provides a numerical computation of  the Hopf
bifurcation value r.

FindRoot@Re@Sp@@2DDD m 0, 8r, 24<D

8r → 24.736842105263143`<

Of course the other provides the same result.
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FindRoot@Re@Sp@@3DDD m 0, 8r, 24<D

8r → 24.736842105263143`<

Both values of r are corresponding to the one theorically computed.

Bifurcation diagram
Since it  has been established [Ruelle et al.,  1971] that  chaos may occur  in three-dimensional dynamical systems,
analytical  methods  such  as  the  existence  of  Shil'nikov  orbit  [Shil'nikov,  1965]  and  numerical  tools  such  as  the
construction  of  a  bifurcation  diagram  [Glass  et  al.,  1988]  have  been  developed.  Let's  consider  as  previously,  a
three-dimensional autonomous dynamical system defined under the same conditions as above. 

(3)d X
|

ccccccccc
dt

=
|

 HX
|L

with

X
|

= @x, y, zDt ε U ⊂ 3, Hλ, μ, ρL ε V ⊂ 3

and
|

 HX
|L = Af IX

|
, λM, g IX

|
, μM, h IX

|
, ρME

t
 ε U ⊂ 3

where l, m and r are real parameters.

d X
|

cccccccccc
dt
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dt
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dt
d zcccccc
dt

y

{

zzzzzzzzzzzz
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i

k

jjjjjjjjj

f Hx, y, z, λL
g Hx, y, z, μL
h Hx, y, z, ρL

y

{

zzzzzzzzz

Choose  the  bifurcation  parameter  (l  for  example)  between  the  set  of  parameters  of  the  dynamical  system  and
"freeze" all the others (m and r).  In order to construct a bifurcation diagram, the system is numerically integrated
(with NDSolve function) according to the bifurcation parameter l. Then, each variable x[t], y[t] and z[t], solution
of this dynamical system (3) may be numerically computed according to the bifurcation parameter l. A bifurcation
diagram  is  the  plot  of  the  successive  maxima  of  one  of  these  variables  (z[t],  for  example)  as  a  function  of  the
bifurcation parameter l. The following applet developed by Eric Javoy, computer scientist, is based on dichotomy
principle and uses a follower which is "tracking" the curve until it reaches its maximum. This applet provides the
bifurcation  diagram of  a  three-dimensional  dynamical  system.  It  plots  the  maximum Zmax  of  the  solution  of  the
third  variable  Z  of  this  dynamical  system  in  function  of  the  bifurcation  parameter  chosen  λ.  The  bifurcation
parameter l is in the range: λmin ≤ λ ≤ λmax. The step (= Pasl) of evaluation may be adjusted in function of the
region of the diagram: λ < λint1, 0.0001, Hλ ≥ λint1L && Hλ < λint2L, 0.0001, λ ≥ λint2, 0.0001.
The  dynamical  system  is  first  integrated  with  a  classical  method  of  NDSolve  between  the  range  of  time:
8t, t0, tmax<.
Then,  the  parameter  is  varying  with  the  chosen  step  (=  Pasl)  and  Z  is  evaluated  in  order  to  find  its  maximum
between tmin and tmax after elimination of the transient behaviour.
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Applet by Eric Javoy, computer scientist

Clear@"Global`∗"D
Off@General::spell1D
$RecursionLimit = Infinity;

μ =;
ρ =;

Pasλ = 0.001;
TableauPlot = 8<;

For@λ = λmin, λ ≤ λmax, λ = λ + Pasλ,
solution = NDSolve@

8x'@tD == f Hx, y, z, λL, x@0D m x0,
y'@tD == g Hx, y, z, μL, y@0D m y0,
z'@tD == h Hx, y, z, ρL, z@0D m z0<,

8x, y, z<, 8t, t0, tmax<, Method → ExplicitRungeKuttaD;

Pasλ = Which@λ < λint1, 0.0001,
Hλ ≥ λint1L && Hλ < λint2L, 0.0001, λ ≥ λint2, 0.0001D;

Print@"λ=", λD;
Pas = .05;
Tendance = 0;
BorneBasse = tmin;
BorneHaute = tmax;
Precedent =

Evaluate@8z@BorneBasseD< ê. solutionD@@1DD@@1DD;
Tendance = Which@Precedent >=

Evaluate@8z@BorneBasse + PasD< ê. solutionD@@1DD@@1DD,
−1, Precedent < Evaluate@

8z@BorneBasse + PasD< ê. solutionD@@1DD@@1DD, 1D;
For @Valeur = BorneBasse + Pas, Valeur ≤ BorneHaute,

Valeur = Valeur + Pas,
Actuel = Evaluate@8z@ValeurD< ê. solutionD@@1DD@@1DD;
If@HActuel >= PrecedentL, Goto @NonMaximumDD;
If@Actuel < Precedent && Tendance m −1,

Goto@ActualisePrecedentDD;
TableauPlot = Append@TableauPlot,

8N@FromDigits@RealDigits@λDD, 6D,
N@FromDigits@RealDigits@Evaluate@
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8z@Valeur − PasD< ê. solutionD@@1DD@@1DDDD, 6D<D;
Tendance = −1;

Goto @ActualisePrecedentD;
Label@NonMaximumD;

Tendance = 1;
Goto@ActualisePrecedentD;

Label@RechercheFineD;
Print@"t="; ValeurD;

Label@PremieresValeursD;
If@Valeur != BorneBasse, Tendance =

Which@Actuel < Precedent, −1, Actuel ≥ Precedent, 1DD;
Label@ActualisePrecedentD;

Precedent = Actuel;
Label@FinTraitementD;

D
D

The following function plots the bifurcation diagram.

ListPlot@TableauPlot,
PlotStyle → 8PointSize@0.005D, Hue@.6D<,
ImageSize → 8400, 400<,
PlotRange → 88λmin, λmax<, 8za, zb<<, Frame → True,
FrameLabel −> 8"λ ", "Zmax"<, RotateLabel → FalseD

Example: bifurcation diagram for the Volterra-Gause model
This  three-dimensional  predator-prey  model,  elaborated  by  Ginoux  et  al.  [2005],  consisted  of  a  prey,  a  predator
and  top-predator  has  been  named  Volterra-Gause  because  it  combines  the  original  model  of  V.Volterra  [1926]
incorporating  a  logisitic  limitation  of  P.F.Verhulst  [1838]  type  on  the  growth  of  the  prey  and  a  limitation  of
G.F.Gause  [1935]  type  on  the  intensity  of  the  predation  of  the  predator  on  the  prey  and  of  top-predator  on  the
predator.

V
◊
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jjjjjjjjjjjj

d xcccccc
dt
d ycccccc
dt
d zcccccc
dt

y

{

zzzzzzzzzzzz
=

|
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jjjjjjjj

f Hx, y, z, ξL
g Hx, y, z, δ1L

h Hx, y, z, ∂, δ2L

y

{

zzzzzzzz
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i

k

jjjjjjjjjjjjj

1cccc
ξ

 Ix H1 − xL − x
1cccc2 yM

−δ1 y + x
1cccc2  y − y

1cccc2  z

∂ z Iy
1cccc2 − δ2M

y

{

zzzzzzzzzzzzz

with  x,  ¶,  δ1  and  δ2  are  real  parameters:  ξ = 0.866,  ∂ = 1.428,  δ1 = 0.577,  δ2 = 0.376  and  where  the
functions  f,  g  and  h  are  infinitely  derivable  with  respect  to  all  xi,  and  t,  i.e.,  are  C¶functions  in  a  compact  U
included in 3 and with values in .  Variations of the parameter δ1  induce a period doubling cascade highlighted
in  the  bifurcation  diagram  and  which  transcribes  the  chaotic  feature  of  this  model.  Thus,  choosing  δ1  as  the
bifurcation  parameter  and  "freezing"  all  the  others  with  the  corresponding  values:  x  =  0.866,  ¶  =  1.428,
δ2 = 0.376, the bifurcation diagram of this system may be built with the above applet.   
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ξ = 0.8660254037844386`;
∂ = 1.4288690166235205`;
δ2 = 0.37602114655785496`;
k = 0.5;
p = 0.5;
Pasλ = 0.001;
TableauPlot = 8<;
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For@λ = 0.6, λ ≤ 0.67, λ = λ + Pasλ,
solution =

NDSolve@8ξ x'@tD == x@tD − x@tD^2 − 0.25 x@tD^k y@tD,
x@0D m 0.15, y'@tD ==

−λ y@tD + x@tD^k y@tD − 0.25^0.5 y@tD^p z@tD, y@0D m 0.5,
z'@tD m ∂ H0.25^0.5 y@tD^p − δ2L z@tD, z@0D m 0.5<,
8x, y, z<, 8t, 0, 700<, Method → ExplicitRungeKuttaD;

Pasλ = Which@λ < 0.628, 0.0001,
Hλ ≥ 0.628L && Hλ < 0.634L, 0.0001, λ ≥ 0.634, 0.0001D;

Print@"λ=", λD;
Pas = .05;
Tendance = 0;
BorneBasse = 600;
BorneHaute = 700;
Precedent =

Evaluate@8z@BorneBasseD< ê. solutionD@@1DD@@1DD;
Tendance = Which@Precedent >=

Evaluate@8z@BorneBasse + PasD< ê. solutionD@@1DD@@1DD,
−1, Precedent < Evaluate@

8z@BorneBasse + PasD< ê. solutionD@@1DD@@1DD, 1D;
For @Valeur = BorneBasse + Pas, Valeur ≤ BorneHaute,

Valeur = Valeur + Pas,
Actuel = Evaluate@8z@ValeurD< ê. solutionD@@1DD@@1DD;
If@HActuel >= PrecedentL, Goto @NonMaximumDD;
If@Actuel < Precedent && Tendance m −1,

Goto@ActualisePrecedentDD;
TableauPlot = Append@TableauPlot,

8N@FromDigits@RealDigits@λDD, 6D,
N@FromDigits@RealDigits@Evaluate@

8z@Valeur − PasD< ê. solutionD@@1DD@@1DDDD, 6D<D;
Tendance = −1;

Goto @ActualisePrecedentD;
Label@NonMaximumD;

Tendance = 1;
Goto@ActualisePrecedentD;

Label@RechercheFineD;
Print@"t="; ValeurD;

Label@PremieresValeursD;
If@Valeur != BorneBasse, Tendance =

Which@Actuel < Precedent, −1, Actuel ≥ Precedent, 1DD;
Label@ActualisePrecedentD;

Precedent = Actuel;
Label@FinTraitementD;

D
D
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ListPlot@TableauPlot,
PlotStyle → 8PointSize@0.005D, Hue@.6D<,
ImageSize → 8400, 400<,
PlotRange → 880.6, 0.67<, 80.5, 1.1<<, Frame → True,
FrameLabel −> 8"δ1", "Zmax"<, RotateLabel → FalseD

0.61 0.62 0.63 0.64 0.65 0.66 0.67
δ1

0.6

0.7

0.8

0.9

1

1.1

Zmax

The above bifurcation diagram highlights the period-doubling cascade of this model and its chaotic behaviour for
parameter  values  δ1 d 0.63.  The  phase  portrait  of  the  Volterra-Gause  model  with  the  following  parameters:
ξ = 0.866,  ∂ = 1.428,  δ1 = 0.577,  δ2 = 0.376  may  be  obtained  by  classical  numerical  integration  and
provides a chaotic attractor in the snail shell shape presented below.
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