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Abstract – We consider three - trophic food chains, 
particularly Rosenzweig - MacArthur, Hastings - Powell and 
Volterra-Gause models, interacting in a predator prey mode. 
Kinematics methods, especially acceleration properties, carry 
out a determination of the slow manifold in a simple way and 
provide a criterion of its attractivity. While using the Frénet 
frame, we give a qualitative description of attractors as the 
deployment in the phase space of a submanifold, called 
singular manifold. 
 
 
 

I. Dynamical systems 
 

 In the following we consider a system of differential 
equations defined in a compact E included in n : 
 

dX(t) (X)     (1)
dt

= ℑ  

 
with  
 

[ ]1 2X , ,...,t n
nx x x E= ∈ ⊂  

 
and  

 

1 2(X) (X), (X),..., (X)
t n

nf f f E⎡ ⎤ℑ = ∈ ⊂⎣ ⎦
 

 
The vector ℑ  defines a velocity vector field in E whose 
components fi which are supposed to be continuous and 
infinitely derivable with respect to all xi, i.e., are C∞ 
functions in E, with values included in Ñ, and checking the 
assumptions of the Cauchy-Lipschitz theorem. For more 
details, see for example [1].  
 
A solution of this system is an integral curve X(t)  tangent 
to ℑ  whose values define the states of the dynamical 
system described by the Eq. (1). Since none of the 
components fi of the velocity vector field depends here 
explicitly on time, the system is autonomous. 
 
 

II. Kinematics vector functions 
 

The approach suggested consists in using the Mechanics 
formalism. So, it is necessary to define the kinematics 
variables needed to its development. Thus, we can 
assimilate the solution of a dynamical system to the co-
ordinates, i.e., to the position, of a point M at the instant t. 
This integral curve defined by X(t)  the vector function of 
the scalar variable t represents the trajectory of M. 
 
A. Instantaneous velocity vector 

 
As the vector function X(t)  of the scalar variable t 
represents the trajectory of M, the total differential of 
X(t)  is the vector function V(t)  of the scalar variable t 
which represents the instantaneous velocity vector of the 
mobile M at the instant t.  
We will note: 
 

dX(t)V(t) = (X)     (2)
dt

= ℑ  

 
The instantaneous velocity vector V(t)  is supported by the 
tangent to the trajectory.  
 
B. Instantaneous acceleration vector 

 
As the instantaneous vector function V(t)  of the scalar 
variable t represents the velocity vector of M, the total 
differential of  V(t)  is the vector function γ(t)  of the 
scalar variable t which represents the instantaneous 
acceleration vector of the mobile M at the instant t. We 
will note:  
 

dV(t)γ(t) =      (3)
dt

 

 
Since the functions fi are supposed to be C∞ functions in a 
compact E included in Ñn, it is possible to calculate the 
total differential of the vector field ℑ  defined by (2). By 
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using the derivation of the composed functions, a 
derivative within the meaning of  Fréchet appears: 

 
dV d dX     (4)
dt dtdX

ℑ
=  

 

while noticing that d
dX
ℑ  is the functional jacobian matrix J 

of the system (1), and according to Eqs. (2) and (3) we 
have the following equation which plays a very important 
role: 
 

γ = JV     (5)  
 
 

III. Frénet frame 
 

Using the Frénet basis, i.e., a basis built starting from the 
trajectory curve X(t)   directed towards the motion of the 
mobile M. Let's define τ  the unit vector of the tangent to 
the trajectory curve in M, ν  the unit vector of the 
principal normal in M directed towards the interior of the 
concavity of the curve and β  the unit vector of the 
binormal to the trajectory  curve in M so that the trihedron 
(τ ,ν , β ) is direct. Since the instantaneous velocity vector 

V(t)  is tangent for any point M to the trajectory curve 

X(t) ,  we can choose a tangent unit vector as following: 
 

V      (6)
V

τ =  

 
 In the same manner, we can choose a unit vector of the 
normal, as: 

 
V      (7)
V

ν
⊥

⊥
=  

 
with 

V = V
⊥  

 
where the vector V

⊥
 represents the normal vector to the 

instantaneous velocity vector V  directed towards the 
interior of the concavity of the curve. Thus, we can write 
the tangential and normal components of the instantaneous 
acceleration vector   
γ  as: 

γ.V     
V

     (7)
γ V

V

τ

ν

γ

γ

=

∧
=

 

 
By noticing that the variation of the norm of the 
instantaneous velocity vector   can be written: 
 

d V γ.V
dt V

τγ= =  

 
Moreover, in the Mechanics formalism the reciprocal 
radius of curvature and the torsion may be written:  
 

( )

3 2

2

.

γ V1

V V
     (8)

γ V
     

γ . γ V

νγ∧
= =

ℜ

∧
ℑ = −

∧

 

 
IV. New Method of Determination of the Slow 

Manifold Equation using Acceleration 
properties 

 
In the Mechanics formalism, the study of the motion of a 
mobile M consists in being interested in the variation of 
the Euclidian norm of its instantaneous velocity vector V , 
i.e., in the tangential γτ  component of its instantaneous 

acceleration vector γ . The variation of the Euclidian norm 
of the instantaneous velocity vector  V depends on the sign 
of the scalar product between the instantaneous velocity 
vector V  and the instantaneous acceleration vector γ , i.e., 
of the angle formed by these two vectors. Thus if, γ.V 0> , 
the variation of the Euclidian norm  of the instantaneous 
velocity vector V  is positive and the Euclidian norm of 
the instantaneous velocity vector V  increases. The motion 
is accelerated, it is in its fast phase. If, γ.V 0=  the 
variation of the Euclidian norm of the instantaneous 
velocity vector V  is null and the Euclidian norm of the 
instantaneous velocity vector V  is constant. The motion is 
uniform, it is in a phase of transition between its fast phase 
and its slow phase. Moreover, the instantaneous velocity 
vector V  is perpendicular to the instantaneous 
acceleration vector γ . If, γ.V 0< , the variation of the 
Euclidian norm  of the instantaneous velocity vector V  is 
negative and the Euclidian norm of the instantaneous 
velocity vector V  decreases. The motion is decelerated, it 
is in its slow phase. So, the study of the nature of the 
motion of a mobile M depends on the sign of the scalar 
product between the instantaneous velocity vector V  and 
the instantaneous acceleration vector γ , i.e., of the angle 
formed by these two vectors. Still using the Mechanics 
formalism, we will now focus our attention on the 
directions of these two vectors and use the fact that this 
scalar product is maximum when these vectors are 
collinear. So, if the instantaneous velocity vector V  and 
the instantaneous acceleration vector γ  are collinear and 
of opposite directions the motion is decelerated. These 
features make it possible to delimit the slow and fast 
domains of the phase space. 
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Proposition 1. 
 
If I(x0, y0, z0) is one of the equilibrium points of a  
dynamical system defined by Eq. (1) and represented by  
the  instantaneous velocity vector V  from which the 
instantaneous acceleration vector γ  is deduced,  then, the 
plane (P) going through the fixed point I(x0, y0, z0) and 
having for direction vectors the instantaneous vectors V  
and γ  is defined by the coplanarity condition between V , 

γ  and IM  formed starting from any fixed point I and 
from any point M(x, y, z) belonging to (P). So, 
 

( ) 2 M  (P)   μ, η /  IM = μV + ηγ∀ ∈ ⇔ ∃ ∈  
 
This coplanarity condition may be written:   
 

( )IM . V γ 0     (9)∧ =  

Thus, this equation defines an attractive slow manifold in 
the case of slow-fast autonomous dynamical system (S-
FADS), i.e., systems having a small parameter in one of 
the component of velocity or systems which can be 
considered as (S-FADS) [8]. The proof of this proposition 
and following are stated in other papers. 
 

V. Singular Approximation of the acceleration 
 
It has been shown [8] that for a model having a small 
parameter û in one of the components its instantaneous 
velocity vector V  the slow manifold equation associated 
to the singular approximation of the intantaneous velocity 
vector constituted the zero-order approximation in û of the 
slow manifold equation. We will now focus on the slow 
manifold equation associated to the singular approximation 
of the instantaneous acceleration vector γ . 
 
Proposition 2. 
 
If a dynamical system has a small parameter û in one of 
the components its instantaneous velocity vector V  and 
so, a slow manifold equation associated to the singular 
approximation, the slow manifold equation associated to 
the singular approximation of the instantaneous 
acceleration γ  constitutes the first-order approximation in 
û of the slow manifold. Thus, the slow manifold can be 
obtained easier while writing: 
 

2

2

d x  = 0     (10)
dt

 

 
  
It has been previously stated that the equation defined by 
proposition 2 leads to the first-order approximation in û of 
the equation of the manifold (V1) which we called first-
order approximation of the equation of the slow manifold 
(V0). It is possible to show that the successive 
approximations of the equations of the manifolds (V2), 

(V3), etc are obtained respectively from 
.
γ 0= , 

..
γ 0= , etc. 

and are the envelopes of the slow manifold (V0).  
 

The manifold (V1) obtained by proposition 2 is locally 
tangent to the slow manifold (V0). These manifolds are 
thus locally parallel. The theory of the parallel curves and 
surfaces (Leibniz) show that the distance between these 
manifolds is cancelled when the assumptions of 
proposition 1 are checked. Consequently what we call the 
first-order approximation (V1) coincides locally with the 
slow manifold (V0).  
 
 

VI. Singular manifold 
 

The singular manifold is defined as the location of the 
points belonging to the slow manifold of equation Φ = 0 
and for which the tangential component γτ  of the 

instantaneous acceleration vector γ  is cancelled. This one-
dimensional manifold is a submanifold of the slow 
manifold. Let us consider the location of the points 
obtained by integration in a given time of the system from 
initial conditions taken on this manifold. They constitute a 
submanifold which also belongs to the attractor. The 
whole of these manifolds corresponds to different points of 
integration making it possible to reconstitute the attractor 
by redeployment of the singular manifold.  
 

VII. Application to predator-prey models 
 

A. Rosenzweig-MacArthur model 
 
This model, elaborated by M. L. Rosenzweig and R.H. 
MacArthur [7], starting from the equations of V. Volterra 
[10] transcribes the evolution of three species: x, y and z 
interacting in a predator-prey mode and is composed of a 
Verhulst [9] logistic prey x, a predator y, and top-predatory 
z, whose predation are limited by functional responses of 
Holling [5] type 2. 
 

1

1
1 2

2
2

d 1
dt
dV      (10)  
dt
d
dt

x yx x
x

y x zy
x y

z yz
y

ξ β

δ
β β

ε δ
β

⎛ ⎞⎛ ⎞
⎛ ⎞ − −⎜ ⎟⎜ ⎟+⎜ ⎟ ⎝ ⎠⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

with  
 

1 2 1 2 = 0.1,  = 0.3,  = 0.3,  = 0.1,  = 0.1, = 0.62ξ ε β β δ δ  
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Fig. 1: Slow manifold and Singular approximation of the 
instantaneous acceleration vector of the Rosenzweig-MacArthur 
model 
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B. Hastings-Powell model 
 
By carrying out some change of variables in the 
Rosenzweig-Mac Arthur [7] model, one obtains the 
Hastings and Powell [4] model 
  

1

1

1 2
1

1 2

2
2

2

d 1
1dt

dV      (11)  
dt 1 1
d
dt 1

a yx x x
x

a x a zy y
x y

z a yz
y

β

δ
β β

δ
β

⎛ ⎞⎛ ⎞
⎛ ⎞ − −⎜ ⎟⎜ ⎟+⎜ ⎟ ⎝ ⎠⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

 
with  
 

1 2 1 2 1 2 = 5,  = 0.1,  = 3,  = 2,  = 0.4,  = 0.01a a β β δ δ  
 

 
Fig. 2: Slow manifold and singular approximation of the 
instantaneous acceleration vector of the Hastings-Powell model 
 
C. Volterra-Gause model 
 
This model elaborated by J.-M. Ginoux, B. Rossetto and 
J.-L. Jamet [3] which consists of a prey, a predator and 
top-predator, has been named Volterra-Gause since it is 
made up of the original model of V. Volterra [10] 
incorporating a logisitic limitation of P.F. Verhulst [9] type 
on the growth of the prey and a limitation of G.F. Gause 
[2] type on the intensity of the predation of the predator on 
the prey and of  top-predator on the predator. 
 

( )( )

( )

1
2

1 1
2 2

1

1
2

2

d 1 1
dt
dV      (12)  
dt
d
dt

x x x x y

y y x y y z

z yz

ξ

δ

ε δ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
with 1 2 = 0.866,  = 1.428,  = 0.577,  = 0.376ξ ε δ δ  

 
Fig. 3: Slow manifold and singular approximation of the 
instantaneous acceleration vector of the Volterra-Gause model 
 
The use of the algorithm developed by [11] made it 
possible to compute what can be regarded as its Lyapunov 
exponents: (+0.035, 0.000, -0.628). Then, the Kaplan-
Yorke [6] conjecture provided the following Lyapunov 
dimension: 2.06. So, the fractal dimension of this chaotic 
attractor is close to that of a surface and it is thus possible 
to consider a deployment of a singular manifold. Now, let 
us consider the location of the points obtained by 
integration in a given time of initial conditions taken on 
this manifold. They constitute a submanifold which also 
belongs to the attractor. The whole of these manifolds 
corresponds to different points of integration making it 
possible to reconstitute the attractor by redeployment of 
the singular manifold. In order to illustrate this concept 
let's apply it on this predator-prey model. 
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Fig. 4: Deployment of the singular manifold (dot line) of the 
Volterra-Gause model 
 
 

VIII. Discussion 
 
In this work the use of the Mechanics formalism and of the 
instantaneous acceleration vector provided on the one hand 
a condition of discrimination of the slow and fast domains 
of the phase space, and on the other hand, a new condition 
of determination of the slow manifold equation of (S-
FADS) or of dynamical systems considered as (S-FADS): 
the coplanarity between the instantaneous velocity vector 
V , the instantaneous acceleration vector γ  and the vector 
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IM  formed starting from a fixed point of such dynamical 
systems and any point M.  
Moreover, this kinematics method provided for such 
systems a new manifold: the singular approximation of the 
instantaneous acceleration vector γ  constituting the first-
order approximation in û of the slow manifold obtained by 
the coplanarity condition. At last, the introduction of the 
singular manifold which can reconstitute the attractor by 
successive integrations of points taken on this manifold, 
i.e., by redeployment, provides a qualitative description of 
its structure. The Mechanics formalism and more precisely 
the radius of curvature and the torsion could be useful to 
go further in the description of the deployment and thus in 
the understanding of the attractor structure. 
This work has highlighted too certain similarities between 
three different models. Their common features and the 
possibility of transition between one to the other by a 
simple variation of parameter offer an alternative for the 
choice of the model.  
This could be very useful for the biologists who work with 
predator-prey models. In spite of differences in their 
functional responses these models present some striking 
similarities in the nature and the number of their fixed 
points, like in their dynamic behavior: existence of a limit 
cycle, occurrence of a Hopf bifurcation, presence of a 
chaotic attractor or period doubling cascades. 
 

Dynamicalfeatures \Models Rosenzweig- MacArthur Hastings - Powell Volterra - Gause

Equilibriumpoints
O H0, 0, 0L I H x̀, ỳ, 0L

J Hx* , y*, z* L K H1, 0, 0L
O H0, 0, 0L I H x̀, ỳ, 0L

J Hx*, y* , z*L K H1, 0, 0L
O H0, 0, 0L I H x̀, ỳ, 0L

J Hx*, y* , z*L K H1, 0, 0L
Attractionalsink 2 2 2
Hopf bifurcation d1 = 0.6835 d1 = 0.7402 d1 = 0.7474
Chaoticattractor Moebius strip Teacup Snailshell
Period - doubling d2 = 0.67785 b1 = 2.437 d1 = 0.625

Slowmanifold 1 1 1  
 

Both fixed points O (0, 0, 0) present the same stability, i.e., 
they have attractive directions according to z'z and 
repulsive directions according to x'x. Eigendirections of 
points K (1, 0, 0) are attractive according to x'x and z'z. 
Points I and J (x*, y*, z*) have the behaviour of a stable 
and an unstable focus (resp.), one in the xy plane and the 
other apart from the xy plane. These models introduce rich 
and complexes dynamics of which it remains still much of 
aspects to study.  
 
Moreover it appears that it is possible, in some domains of 
variation of parameters, to reduce the models dimension 
which will be useful to take in account the influence of the 
external medium by time-dependent coefficients. 
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